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Preface

A Practitioner’s Guide to Software Test Design contains today’s
important current test design approaches in one unique book.
Until now, software testers had to search through a number of
books, periodicals, and Web sites to locate this vital information.

The book focuses only on software test design, not related
subjects such as test planning, test management, test team
development, etc. While those are important in software testing,
they have often overshadowed what testers really need—the
more practical aspects of testing, specifically test case design.
Other excellent books can guide you through the overall process

of software testing. One of my favorites is Systematic Software
Testing by Rick Craig and Stefan Jaskiel.

A Practitioner’s Guide to Software Test Design illustrates each
test design approach through detailed examples and step-by-step
instructions. These lead the reader to a clear understanding of
each test design technique.

Today’s Testing Challenges

For any system of interesting size it is impossible to test all the
different logic paths and all the different input data
combinations. Of the infinite number of choices, each one of
which is worthy of some level of testing, testers can only choose
a very small subset because of resource constraints. The purpose
of this book 1s to help you analyze, design, and choose such

subsets, to implement those tests that are most likely to discover
defects.

Xiii

Importance of Test
Design

“The act of careful,
complete,
systematic, test
design will catch as
many bugs as the
act of testing. ...
Personally, | believe
that it's far more
effective.”

- Boris Beizer
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It 1s vital to choose test cases wisely. Missing a defect can result

in significant losses to your organization if a defective system is
placed into production.

A Practitioner’s Guide to Software Test Design describes a set of
key test design strategies that improve both the efficiency and
effectiveness of software testers.

Structure and Approach

A Practitioner’s Guide to Software Test Design explains the
most important test design techniques in use today. Some of
these techniques are classics and well known throughout the

testing community. Some have been around for a while but are
not well known among test engineers. Still others are not widely

known, but should be because of their effectiveness. This book
brings together all these techniques into one volume, helping the
test designer become more efficient and effective in testing.

Each test design technique is approached from a practical, rather
than a theoretical basis. Each test design technique i1s first
introduced through a simple example, then explained in detail.
When possible, additional examples of its use are presented. The
types of problems on which the approach can be used, along with
its limitations, are described. Each test design technique chapter
ends with a summary of its key points, along with exercises the
reader can use for practice, and references for further reading.

Testers can use the techniques presented immediately on their
projects.

Each test design approach i1s described in a self-contained
chapter. Because the chapters are focused, concise, and
independent they can be read “out of order.” Testers can read the
chapters that are most relevant to their work at the moment.

A Note from the
Author

| love a good
double integral
sign

If

as much as the
next tester, but
we're going to
concentrate on
the practical, not
the theoretical.
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Audience

This book was written specifically for:

e Software test engineers who have the primary
responsibility for test case design. This book details the

most efficient and effective methods for creating test
cases.

e Software developers who, with the advent of Extreme
Programming and other agile development methods, are
being asked to do more and better testing of the software

they write. Many developers have not been exposed to
the design techniques described in this book.

e Test and development managers who must understand,
at least in principle, the work their staff performs. Not
only does this book provide an overview of important
test design methods, it will assist managers in estimating
the effort, time, and cost of good testing.

¢ Quality assurance and process improvement engineers

who are charged with defining and improving their
software testing process.

e Instructors and professors who are searching for an
excellent reference for a course in software test design
techniques.
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Appreciation

The following reviewers have provided invaluable assistance in
the writing of this book: Anne Meilof, Chuck Allison, Dale
Perry, Danny Faught, Dorothy Graham, Geoff Quentin, James
Bach, Jon Hagar, Paul Gerrard, Rex Black, Rick Craig, Robert
Rose-Coutré, Sid Snook, and Wayne Middleton. My sincere

thanks to each of them. Any faults in this book should be
attributed directly to them. (Just kidding!)

Some Final Comments

This book contains a number of references to Web sites. These
references were correct when the manuscript was submitted to

the publisher. Unfortunately, they may have become broken by
the time the book is in the readers’ hands.

It has become standard practice for authors to include a pithy
quotation on the title page of each chapter. Unfortunately, the
practice has become so prevalent that all the good quotations
have been used. Just for fun, I have chosen instead to include on
each chapter title page a winning entry from the 2003 Bulwer-
Lytton Fiction Contest (http://www.bulwer-lytton.com). Since
1982, the English Department at San Jose State University has
sponsored this event, a competition that challenges writers to
compose the opening sentence to the worst of all possible novels.

It was inspired by Edward George Bulwer-Lytton who began his
novel Paul Clifford with:

“It was a dark and stormy night; the rain fell in
torrents—except at occasional intervals, when it
was checked by a violent gust of wind which
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swept up the streets (for it is in London that our
scene lies), rattling along the housetops, and
fiercely agitating the scanty flame of the lamps
that struggled against the darkness.”

My appreciation to Dr. Scott Rice of San Jose State University
for permission to use these exemplary illustrations of bad

writing. Hopefully, nothing in this book will win this prestigious
award.
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licensing agreement.
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Chapter 1 -
The Testing Process

The flock of geese flew overhead in a 'V’ formation—not in an
old-fashioned-looking Times New Roman kind of a ‘V’, branched
out slightly at the two opposite arms at the top of the ‘V’, nor in
a more modern-looking, straight and crisp, linear Arial sort of
‘V' (although since they were flying, Arial might have been
appropriate), but in a slightly asymmetric, tilting off-to-one-side
sort of italicized Courier New-like ‘V'—and LaFonte knew that
he was just the type of man to know the difference.’

— John Dotson

" If you think this quotation has nothing to do with software testing you
are correct. For an explanation please read “Some Final Comments” in
the Preface.
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Testing

hat 1s testing? While many definitions have been written,
at its core testing is the process of comparing “what is”
with “what ought to be.” A more formal definition 1s given in the
IEEE Standard 610.12-1990, “IEEE Standard Glossary of

Software Engineering Terminology™ which defines “testing” as:

“The process of operating a system or component under
specified conditions, observing or recording the results,
and making an evaluation of some aspect of the system
or component.”

The “specified conditions” referred to in this definition are
embodied in test cases, the subject of this book.

Rick Craig and Stefan Jaskiel propose an expanded definition of
software testing in their book, Systematic Software Testing.

“Testing 1s a concurrent lifecycle process of engineering,
using and maintaining testware in order to measure and
improve the quality of the software being tested.”

This view includes the planning, analysis, and design that leads
to the creation of test cases in addition to the IEEE’s focus on
test execution.

Different organizations and different individuals have varied
views of the purpose of software testing. Boris Beizer describes
five levels of testing maturity. (He called them phases but today
we know the politically correct term i1s “levels” and there are
always five of them.)

Key Point

At its core, testing is
the process of
comparing “what is”
with “what ought to
be."
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Level O — “There’s no difference between testing and
debugging. Other than in support of debugging, testing
has no purpose.” Defects may be stumbled upon but
there is no formalized effort to find them.

Level 1 — “The purpose of testing is to show that
software works.” This approach, which starts with the
premise that the software 1s (basically) correct, may
blind us to discovering defects. Glenford Myers wrote
that those performing the testing may subconsciously
select test cases that should not fail. They will not create
the “diabolical” tests needed to find deeply hidden
defects.

Level 2 — “The purpose of testing is to show that the
software doesn’t work.” This is a very different mindset.
It assumes the software doesn’t work and challenges the
tester to find its defects. With this approach, we will
consciously select test cases that evaluate the system in
its nooks and crannies, at its boundaries, and near its
edges, using diabolically constructed test cases.

Level 3 — “The purpose of testing is not to prove
anything, but to reduce the perceived risk of not working
to an acceptable value.” While we can prove a system
incorrect with only one test case, it is impossible to ever
prove it correct. To do so would require us to test every
possible valid combination of input data and every
possible invalid combination of input data. Our goals are
to understand the quality of the software in terms of its
defects, to furnish the programmers with information
about the software’s deficiencies, and to provide
management with an evaluation of the negative impact
on our organization if we shipped this system to
customers In its present state.

3
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Level 4 — “Testing is not an act. It 1s a mental discipline
that results in low-risk software without much testing
effort.” At this maturity level we focus on making
software more testable from its inception. This includes
reviews and inspections of its requirements, design, and
code. In addition, it means writing code that incorporates
facilities the tester can easily use to interrogate it while it
1s executing. Further, 1t means writing code that 1s self-
diagnosing, that reports errors rather than requiring
testers to discover them.

Current Challenges

When I ask my students about the challenges they face in testing
they typically reply:

Not enough time to test properly
Too many combinations of inputs to test
Not enough time to test well

Difficulty in determining the expected results of each
test

Nonexistent or rapidly changing requirements

Not enough time to test thoroughly

No training in testing processes

No tool support

Management that either doesn’t understand testing or
(apparently) doesn’t care about quality

Not enough time

This book does not contain “magic pixie dust” that you can use
to create additional time, better requirements, or more
enlightened management. It does, however, contain techniques
that will make you more efficient and effective in your testing by
helping you choose and construct test cases that will find
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substantially more defects than you have in the past while using
fewer resources.

Test Cases

To be most effective and efficient, test cases must be designed,
not just slapped together. The word “design” has a number of
definitions:

N

To conceive or fashion in the mind; invent: design a
good reason to attend the STAR testing conference. To
formulate a plan for; devise: design a marketing strategy
for the new product.

To plan out in systematic, usually documented form:
design a building; design a test case.

To create or contrive for a particular purpose or effect: a
game designed to appeal to all ages.

To have as a goal or purpose; intend.

To create or execute in an artistic or highly skilled
manner.

Each of these definitions applies to good test case design.
Regarding test case design, Roger Pressman wrote:

“The design of tests for software and other engineering
products can be as challenging as the initial design of the
product itself. Yet ... software engineers often treat
testing as an afterthought, developing test cases that ‘feel
right’ but have little assurance of being complete.
Recalling the objectives of testing, we must design tests
that have the highest likelihood of finding the most
errors with a minimum amount of time and effort.”

Key Point

To be most
effective and
efficient, test cases
must be designed,
not just slapped
together.
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Well designed test cases are composed of three parts:

e Inputs
e  QOutputs
¢ Order of execution

Inputs

Inputs are commonly thought of as data entered at a keyboard.
While that is a significant source of system input, data can come
from other sources—data from interfacing systems, data from
interfacing devices, data read from files or databases, the state
the system is in when the data arrives, and the environment
within which the system executes.

Outputs

Outputs have this same variety. Often outputs are thought of as
just the data displayed on a computer screen. In addition, data
can be sent to interfacing systems and to external devices. Data
can be written to files or databases. The state or the environment
may be modified by the system’s execution.

All of these relevant inputs and outputs are important
components of a test case. In test case design, determining the
expected outputs is the function of an “oracle.”

An oracle 1s any program, process, or data that provides the test

designer with the expected result of a test. Beizer lists five types
of oracles:

e Kiddie Oracles — Just run the program and see what
comes out. If it looks about right, it must be right.

Key Point

Test cases consist
of inputs, outputs,
and order of
execution.
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e Regression Test Suites — Run the program and compare
the output to the results of the same tests run against a
previous version of the program.

e Validated Data — Run the program and compare the
results against a standard such as a table, formula, or
other accepted definition of valid output.

e Purchased Test Suites — Run the program against a
standardized test suite that has been previously created
and validated. Programs like compilers, Web browsers,
and SQL (Structured Query Language) processors are
often tested against such suites.

e Existing Program — Run the program and compare the
output to another version of the program.

Order of Execution

There are two styles of test case design regarding order of test
execution.

e Cascading test cases — Test cases may build on each
other. For example, the first test case exercises a
particular feature of the software and then leaves the
system in a state such that the second test case can be
executed. In testing a database consider these test cases:

Create a record

Read the record
Update the record
Read the record

Delete the record

Read the deleted record

A
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Each of these tests could be built on the previous tests.
The advantage 1s that each test case is typically smaller
and simpler. The disadvantage is that if one test fails, the
subsequent tests may be invalid.

¢ Independent test cases — Each test case 1s entirely self
contained. Tests do not build on each other or require
that other tests have been successfully executed. The
advantage 1s that any number of tests can be executed in
any order. The disadvantage is that each test tends to be
larger and more complex and thus more difficult to
design, create, and maintain.

Types Of Testing

Testing 1s often divided into black box testing and white box
testing.

Black box testing is a strategy in which testing is based solely on
the requirements and specifications. Unlike its complement,
white box testing, black box testing requires no knowledge of the

internal paths, structure, or implementation of the software under
test.

White box testing is a strategy in which testing i1s based on the
internal paths, structure, and implementation of the software
under test. Unlike 1its complement, black box testing, white box
testing generally requires detailed programming skills.

An additional type of testing is called gray box testing. In this
approach we peek into the “box™ under test just long enough to
understand how it has been implemented. Then we close up the

box and use our knowledge to choose more effective black box
tests.
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Testing Levels

Typically testing, and therefore test case design, is performed at
four different levels:

Unit Testing — A unit is the “smallest™ piece of software
that a developer creates. It is typically the work of one
programmer and is stored in a single disk file. Different
programming languages have different units: In C++ and
Java the unit 1s the class; in C the unit 1s the function; in
less structured languages like Basic and COBOL the unit
may be the entire program.

Integration Testing — In integration we assemble units
together into subsystems and finally into systems. It 1s
possible for units to function perfectly in isolation but to
fail when integrated. A classic example is this C
program and 1its subsidiary function:

/* main program */
void oops(int);
int main() {

oops(42); /* call the oops function passing an integer */
return O;

}

/* function oops (in a separate file) */

#include <stdio.h>

void oops(double x) { /* expects a double, not an int! */
printf ("%f\n",x); /* Will print garbage (0 is most likely) */
}

I[f these units were tested individually, each would
appear to function correctly. In this case, the defect only
appears when the two units are integrated. The main
program passes an integer to function oops but oops

Key Point

The classical
testing levels are
unit, integration,
system, and
acceptance.
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expects a double length integer and trouble ensues. It is
vital to perform integration testing as the integration
process proceeds.

System Testing — A system consists of all of the
software (and possibly hardware, user manuals, training
materials, etc.) that make up the product delivered to the
customer. System testing focuses on defects that arise at
this highest level of integration. Typically system testing
includes many types of testing: functionality, usability,
security, internationalization and localization, reliability
and availability, capacity, performance, backup and
recovery, portability, and many more. This book deals
only with functionality testing. While the other types of
testing are important, they are beyond the scope of this
volume.

Acceptance Testing — Acceptance testing is defined as
that testing, which when completed successfully, will
result in the customer accepting the software and giving
us their money. From the customer’s point of view, they
would generally like the most exhaustive acceptance
testing possible (equivalent to the level of system
testing). From the vendor’s point of view, we would
generally like the minimum level of testing possible that
would result in money changing hands. Typical strategic
questions that should be addressed before acceptance
testing are: Who defines the level of the acceptance
testing? Who creates the test scripts? Who executes the
tests? What is the pass/fail criteria for the acceptance
test? When and how do we get paid?

Not all systems are amenable to using these levels. These levels
assume that there 1s a significant period of time between
developing units and integrating them into subsystems and then
into systems. In Web development it 1s often possible to go from
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concept to code to production in a matter of hours. In that case,

the unit-integration-system levels don’t make much sense. Many
Web testers use an alternate set of levels:

e Code quality
¢ Functionality
e Usability

¢ Performance
e Security

The Impossibility Of Testing Everything

In his monumental book Testing Object-Oriented Systems,
Robert Binder provides an excellent example of the impossibility
of testing “everything.” Consider the following program:

int blech (int j) {
|=)-1; /| shouldbe j=j+ 1
j =j/30000;
return j;

}

Note that the second line 1s incorrect! The function blech accepts
an integer j, subtracts one from it, divides it by 30000 (integer
division, whole numbers, no remainder) and returns the value
just computed. If integers are implemented using 16 bits on this
computer executing this software, the lowest possible input value
1S —=32768 and the highest is 32767. Thus there are 65,536
possible inputs into this tiny program. (Your organization’s
programs are probably larger.) Will you have the time (and the
stamina) to create 65,536 test cases? Of course not. So which
input values do we choose? Consider the following input values
and their ability to detect this defect.

11
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Input () Expected Result Actual Result
I | 0 0
42 0 0
40000 I I
-64000 -2 -2

Oops! Note that none of the test cases chosen have detected this
defect. In fact only four of the possible 65,536 input values will
find this defect. What is the chance that you will choose all four?
What 1s the chance you will choose one of the four? What 1s the
chance you will win the Powerball lottery? Is your answer the
same to each of these three questions?

Summary

e Testing is a concurrent lifecycle process of engineering,
using, and maintaining testware in order to measure and

improve the quality of the software being tested. (Craig
and Jaskiel)

e The design of tests for software and other engineering
products can be as challenging as the initial design of the
product itself. Yet ... software engineers often treat
testing as an afterthought, developing test cases that ‘*feel
right’ but have little assurance of being complete.
Recalling the objectives of testing, we must design tests
that have the highest likelihood of finding the most
errors with a minimum amount of time and effort.
(Pressman)

e Black box testing is a strategy in which testing 1s based
solely on the requirements and specifications. White box
testing 1s a strategy in which testing i1s based on the
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internal paths, structure, and implementation of the
software under test.

e Typically testing, and therefore test case design, 1s
performed at four different levels: Unit, Integration,
System, and Acceptance.

Practice

1. Which four inputs to the blech routine will find the
hidden defect? How did you determine them? What does

this suggest to you as an approach to finding other
defects?
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Chapter 2 -
Case Studies

They had but one last remaining night together, so they
embraced each other as tightly as that two-flavor entwined
string cheese that is orange and yellowish-white, the orange
probably being a bland Cheddar and the white . . . Mozzarella,
although it could possibly be Provolone or just plain American,
as it really doesn't taste distinctly dissimilar from the orange, yet
they would have you believe it does by coloring it differently.

— Mariann Simms
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Why Case Studies?

wo case studies are provided in the appendices of this book.

Appendix A describes “Brown & Donaldson,” an online
brokerage firm. Appendix B describes the “Stateless University
Registration System.” Examples from these case studies are used
to 1illustrate the test case design techniques described in this
book. In addition, some of the book’s exercises are based on the
case studies. The following sections briefly describe the case
studies. Read the detailed information in Appendix A and B
when required.

Brown & Donaldson

Brown & Donaldson (B&D) is a fictitious online brokerage firm
that you can use to practice the test design techniques presented
in this book. B&D was originally created for Software Quality
Engineering’s Web/eBusiness Testing course (for more details
see http:// www.sge.com).

Screen shots of various pages are included in Appendix A.
Reference will be made to some of these throughout the book.
The actual B&D Web site 1s found at http://bdonline.sge.com.
Any resemblance to any actual online brokerage Web site 1s
purely coincidental.

You can actually try the B&D Web site. First-time users will
need to create a BDonline account. This account is not real—
any transactions requested or executed via this account will not
occur in the real world, only in the fictitious world of B&D.
Once you have created an account, you will bypass this step and
login with your username and password. While creating a new

BROWM DOMNALDSOM
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account you will be asked to supply an authorization code. The
authorization code is eight 1s.

This Web site also contains a number of downloadable
documents from the B&D case study, which can be used to assist
you in developing test plans for your own Web projects.

Stateless University Registration System

Every state has a state university. This case study describes an
online student registration system for the fictitious Stateless

University. Please do not attempt to cash out your stocks from
Brown & Donaldson to enroll at Stateless U.

The document in Appendix B describes the planned user
interface for the Stateless University Registration System
(SURS). It defines the user interface screens in the order in
which they are typically used. It starts with the login screen.
Then it provides the data base set-up fields, the addition/change/
deletion of students, the addition/change/deletion of courses, and
the addition/change/deletion of class sections. The final data
entry screen provides the selection of specific course sections for

each student. Additional administrative functions are also
defined.

17
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Definition

lack box testing 1s a strategy in which testing 1s based solely

on the requirements and specifications. Unlike its
complement, white box testing, black box testing requires no
knowledge of the internal paths, structure, or implementation of
the software under test (SUT).

The general black box testing process 1s:

e The requirements or specifications are analyzed.

e Valid inputs are chosen based on the specification to
determine that the SUT processes them correctly. Invalid
inputs must also be chosen to verify that the SUT detects
them and handles them properly.

Expected outputs for those inputs are determined.

Tests are constructed with the selected inputs.

The tests are run.

Actual outputs are compared with the expected outputs.

A determination is made as to the proper functioning of
the SUT.

Applicability

Black box testing can be applied at all levels of system
development—unit, integration, system, and acceptance.

Unit Integration System Acceptance
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As we move up 1n size from module to subsystem to system the
box gets larger, with more complex inputs and more complex
outputs, but the approach remains the same. Also, as we move up
in s1ze, we are forced to the black box approach; there are simply
too many paths through the SUT to perform white box testing.

Disadvantages

When using black box testing, the tester can never be sure of
how much of the SUT has been tested. No matter how clever or
diligent the tester, some execution paths may never be exercised.
For example, what is the probability a tester would select a test
case to discover this “feature”?

if (name=="Lee" && employeeNumber=="1234" &&
employmentStatus=="RecentlyTerminatedForCause") {
send Lee a check for $1,000,000;

}

To find every defect using black box testing, the tester would
have to create every possible combination of input data, both
valid and invalid. This exhaustive input testing i1s almost always
impossible. We can only choose a subset (often a very small
subset) of the input combinations.

In The Art of Software Testing, Glenford Myers provides an
excellent example of the futility of exhaustive testing: How
would you thoroughly test a compiler? By writing every possible
valid and invalid program. The problem is substantially worse
for systems that must remember what has happened before (i.e.,
that remember their state). In those systems, not only must we

test every possible input, we must test every possible sequence
of every possible input.

Key Point

When using black
box testing, the
tester can never be
sure of how much
of the system under
test has been
tested.

Key Point

Even though we
can't test
everything, formal
black box testing
directs the tester to
choose subsets of
tests that are both
efficient and
effective in finding
defects.
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Advantages

Even though we can’t test everything, formal black box testing
directs the tester to choose subsets of tests that are both efficient
and effective in finding defects. As such, these subsets will find
more defects than a randomly created equivalent number of tests.

Black box testing helps maximize the return on our testing
investment.

References

Myers, Glenford J. (1979). The Art of Software Testing. John
Wiley & Sons.
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On the fourth day of his exploration of the Amazon, Byron
climbed out of his inner tube, checked the latest news on his
personal digital assistant (hereafter PDA) outfitted with wireless
technology, and realized that the gnawing he felt in his stomach
was not fear—no, he was not afraid, rather elated—nor was it
tension—no, he was actually rather relaxed—so it was in all
probability a parasite.

— Chuck Keelan
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Introduction

quivalence class testing is a technique used to reduce the

number of test cases to a manageable level while still
maintaining reasonable test coverage. This simple technique 1s
used intuitively by almost all testers, even though they may not
be aware of it as a formal test design method. Many testers have
logically deduced its usefulness, while others have discovered it
simply because of lack of time to test more thoroughly.

Consider this situation. We are writing a module for a human
resources system that decides how we should process

employment applications based on a person’s age. Our
organization’s rules are:

0-16 Don’t hire
16-18 Can hire on a part-time basis only
18-55 Can hire as a full-time employee

55-99 Don’t hire’

Should we test the module for the following ages: 0, 1, 2, 3, 4, 5,
6,7, 8, ...,90, 91, 92, 93, 94, 95, 96, 97, 98, 99?7 If we had lots
of time (and didn’t mind the mind-numbing repetition and were
being paid by the hour) we certainly could. If the programmer
had implemented this module with the following code we should
test each age. (If you don’t have a programming background
don’t worry. These examples are simple. Just read the code and
it will make sense to you.)

If (applicantAge == 0) hireStatus="NO";
If (applicantAge == 1) hireStatus="NO";

" Note: If you've spotted a problem with these requirements, don’t
worry. They are written this way for a purpose and will be repaired in
the next chapter.

Observation

With these rules our
organization would
not have hired
Doogie Houser,
M.D. or Col. Harlan
Sanders, one too
young, the other too
old.
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f (applicantAge == 14) hireStatus="NO";
f (applicantAge == 15) hireStatus="NO";
f (applicantAge == 16) hireStatus="PART",
f (applicantAge == 17) hireStatus="PART";
f (applicantAge == 18) hireStatus="FULL";
f (applicantAge == 19) hireStatus="FULL";

If (applicantAge == 53) hireStatus="FULL";
If (applicantAge == 54) hireStatus="FULL",
If (applicantAge == 55) hireStatus="NO";
If (applicantAge == 56) hireStatus="NO";

If (applicantAge == 98) hireStatus="NO";
If (applicantAge == 99) hireStatus="NO",

Given this implementation, the fact that any set of tests passes
tells us nothing about the next test we could execute. It may
pass; it may fail.

Luckily, programmers don’t write code like this (at least not very
often). A better programmer might write:

If (applicantAge >= 0 && applicantAge <=16)
hireStatus="NO";

If (applicantAge >= 16 && applicantAge <=18)
hireStatus="PART";

If (applicantAge >= 18 && applicantAge <=55)
hireStatus="FULL";

If (applicantAge >= 55 && applicantAge <=99)
hireStatus="NO";

Given this typical implementation, 1t 1s clear that for the first
requirement we don’t have totest O, 1, 2, ... 14, 15, and 16. Only

one value needs to be tested. And which value? Any one within
that range 1s just as good as any other one. The same is true for
each of the other ranges. Ranges such as the ones described here
are called equivalence classes. An equivalence class consists of
a set of data that 1s treated the same by the module or that should
produce the same result. Any data value within a class is

25
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equivalent, 1n terms of testing, to any other value. Specifically,
we would expect that:

e If one test case in an equivalence class detects a defect,
all other test cases in the same equivalence class are
likely to detect the same defect.

e If one test case in an equivalence class does not detect a
defect, no other test cases in the same equivalence class
1s likely to detect the defect.

This approach assumes, of course, that a specification exists that
defines the various equivalence classes to be tested. It also

assumes that the programmer has not done something strange
such as:

If (applicantAge >= 0 && applicantAge <=16)
hireStatus="NO";

If (applicantAge >= 16 && applicantAge <=18)
hireStatus="PART";

If (applicantAge >= 18 && applicantAge <=41)
hireStatus="FULL",

// strange statements follow

If (applicantAge == 42 && applicantName == "Lee")
hireStatus="HIRE NOW AT HUGE SALARY";

If (applicantAge == 42 && applicantName <> "Lee")
hireStatus="FULL";

// end of strange statements

If (applicantAge >= 43 && applicantAge <=55)
hireStatus="FULL",

If (applicantAge >= 55 && applicantAge <=99)
hireStatus="NO",

Using the equivalence class approach, we have reduced the
number of test cases from 100 (testing each age) to four (testing
one age in each equivalence class)—a significant savings.

Key Point

A group of tests
forms an
equivalence class if
you believe that:

e They all test the
same thing.

» |f one test
catches a bug,
the others
probably will too.

» |f one test
doesn't catch a
bug, the others
probably won't
either.

Cem Kaner
Testing Computer
Software
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Now, are we ready to begin testing? Probably not. What about
input values like 969, -42, FRED, and &$#!@? Should we create
test cases for invalid input? The answer 1s, as any good
consultant will tell you, “it depends.” To understand this answer
we need to examine an approach that came out of the object-
oriented world called design-by-contract.

In law, a contract 1s a legally binding agreement between two
(or more) parties that describes what each party promises to do
or not do. Each of these promises is of benefit to the other.

In the design-by-contract approach, modules (called “methods”
in the object-oriented paradigm, but “module™ 1s a more generic
term) are defined in terms of pre-conditions and post-conditions.
Post-conditions define what a module promises to do (compute a
value, open a file, print a report, update a database record,
change the state of the system, etc.). Pre-conditions define what
that module requires so that it can meet its post-conditions. For
example, if we had a module called openFile, what does it
promise to do? Open a file. What would legitimate pre-
conditions of openFile be? First, the file must exist; second, we
must provide the name (or other identifying information) of the
file; third, the file must be “openable,” that is, it cannot already
be exclusively opened by another process; fourth, we must have
access rights to the file; and so on. Pre-conditions and post-

conditions establish a contract between a module and others that
invoke 1t.

Testing-by-contract is based on the design-by-contract
philosophy. Its approach is to create test cases only for the
situations in which the pre-conditions are met. For example, we
would not test the openFile module when the file did not exist.
The reason is simple. If the file does not exist, openFile does not
promise to work. If there 1s no claim that it will work under a
specific condition, there i1s no need to test under that condition.

Note

According to the
Bible, the age of
Methuselah when
he died was 969
years (Gen 5:27).
Thanks to the
Gideons who made
this data easily
accessible in my
hotel room without
the need for a high
speed Internet
connection.

For More
Information

See Bertrand
Meyer's book
Object-Oriented
Software
Construction for
more on design-by-
contract.
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At this point testers usually protest. Yes, they agree, the module
does not claim to work in that case, but what if the pre-
conditions are violated during production? What does the system
do? Do we get a misspelled word on the screen or a smoking
crater where our company used to be?

A different approach to design is defensive design. In this case
the module 1s designed to accept any input. If the normal pre-
conditions are met, the module will achieve its normal post-
conditions. If the normal pre-conditions are not met, the module
will notify the caller by returning an error code or throwing an
exception (depending on the programming language used). This
notification 1s actually another one of the module’s post-
conditions. Based on this approach we could define defensive

testing: an approach that tests under both normal and abnormal
pre-conditions.

How does this apply to equivalence class testing? Do we have to
test with inputs like -42, FRED, and &$#!@? If we are using
design-by-contract and testing-by-contract the answer is No. If
we are using defensive design and thus defensive testing, the
answer 1S Yes. Ask your designers which approach they are
using. If they answer either “contract” or “defensive,” you know
what style of testing to use. If they answer “Huh?” that means
they are not thinking about how modules interface. They are not
thinking about pre-condition and post-condition contracts. You
should expect integration testing to be a prime source of defects
that will be more complex and take more time than anticipated.

Technique

The steps for using equivalence class testing are simple. First,
identify the equivalence classes. Second, create a test case for
each equivalence class. You could create additional test cases for

Insight

A student in one of my
classes, let's call him
Fred, said he didn't
really care which
design approach was
being used, he was
going to always use
defensive testing.
When | asked why, he
replied, “If it doesn't
work, who will get the
blame - those
responsible or the
testers?”
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each equivalence class if you have the time and money.
Additional test cases may make you feel warm and fuzzy, but
they rarely discover defects the first doesn’t find.

Different types of input require different types of equivalence
classes. Let’s consider four possibilities. Let’'s assume a
defensive testing philosophy of testing both valid and invalid
input. Testing invalid inputs is often a great source of defects.

If an input is a continuous range of values, then there 1s typically
one class of valid values and two classes of invalid values, one
below the valid class and one above it. Consider the Goofy
Mortgage Company (GMC). They will write mortgages for
people with incomes between $1,000/month and $83,333/month.
Anything below $1,000/month you don’t qualify. Anything over
$83,333/month you don’t need GMC, just pay cash.

For a valid input we might choose $1,342/month. For invalids
we might choose $123/month and $90,000/month.

Valid
1

$83,333/month

I nvalid /

If an input condition takes on discrete values within a range of
permissible values, there are typically one valid and two invalid
classes. GMC will write a single mortgage for one through five
houses. (Remember, it’s Goofy.) Zero or fewer houses i1s not a

legitimate input, nor 1s six or greater. Neither are fractional or
decimal values such as 22 or 3.14159.

$1,000/month v

Insight

A student in one of my
classes, let's call her
Judy, felt very
uncomfortable about
having only one test
case for each
equivalence class.
She wanted at |least
two for that warm and
fuzzy feeling. |
indicated that if she
had the time and
money that approach
was fine but
suggested the
additional tests would
probably be
ineffective. | asked her
to keep track of how
many times the
additional test cases
found defects that the
first did not and let me
know. | never heard
from Judy again.

Figure 3-1

Continuous
equivalence classes
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Valid
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4 N T
Py A ¥ A A
0 ¢ 1 2 3 4 5 p» 6
“— |nvalid -

For a valid input we might choose two houses. Invalids could be
-2 and 8.

GMC will make mortgages only for a person. They will not

make mortgages for corporations, trusts, partnerships, or any
other type of legal entity.

Valid

Corporation
Trust
Partnership

lnvalid

For a valid input we must use “person.” For an invalid we could
choose “corporation” or “trust” or any other random text string.
How many invalid cases should we create? We must have at

least one; we may choose additional tests for additional warm
and fuzzy feelings.

GMC will make mortgages on Condominiums, Townhouses, and
Single Family dwellings. They will not make mortgages on
Duplexes, Mobile Homes, Treehouses, or any other type of
dwelling.

Figure 3-2

Discrete
equivalence classes

Figure 3-3

Single selection
equivalence classes
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valid

Duplex
Mobile Home
Treehouse

Single Family
Townhouse
Condo

lnvalid

For valid imnput we must choose from “Condominium,”
“Townhouse,” or “Single Family.” While the rule says choose
one test case from the valid equivalence class, a more
comprehensive approach would be to create test cases for each
entry in the valid class. That makes sense when the list of valid
values 1s small. But, if this were a list of the fifty states, the
District of Columbia, and the various territories of the United
States, would you test every one of them? What if the list were
every country in the world? The correct answer, of course,
depends on the risk to the organization if, as testers, we miss
something that is vital.

Now, rarely will we have the time to create individual tests for
every separate equivalence class of every input value that enters
our system. More often, we will create test cases that test a
number of input fields simultaneously. For example, we might
create a single test case with the following combination of
Inputs:

Monthly Numhfzr of Applicant Dwelling Resul
Income | Dwellings Types |
$5.000 | 2 Person Condo Valid

Each of these data values is in the valid range, so we would

expect the system to perform correctly and for the test case to
report Pass.

Figure 3-4

Multiple selection
equivalence class

Key Point

Rarely will we have
the time to create
individual tests for
every separate
equivalence class
of every input value.

Table 3-1

A test case of valid
data values.
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[t 1s tempting to use the same approach for invalid values.

Monthly | Number of . Dwelling
Income | Dwellings Applicant Types | Result
$100 8 Partnership Trechouse Invalid

If the system accepts this input as valid, clearly the system is not
validating the four input fields properly. If the system rejects this
input as invalid, it may do so in such a way that the tester cannot
determine which field it rejected. For example:

ERROR: 653X-2.7 INVALID INPUT

In many cases, errors in one input field may cancel out or mask
errors in another field so the system accepts the data as valid. A
better approach 1s to test one invalid value at a time to verify the
system detects it correctly.

Number :
P;:::::E of Applicant D,}v;::;:g Result
Dwellings
$100 | Person SingleFam | Invalid
$1,342 0 Person Condo Invalid
$1,342 t Corporation Townhouse | Invalid
$1,342 I Person Treehouse | Invalid

.

For additional warm and fuzzy feelings, the inputs (both valid
and invalid) could be varied.

Monthly Numbfr of Applicant Dwelling Result
Dwellings Types

I Person Single Family | Invalid

0 Person Condominium | Invalid

3 Corporation Townhouse | Invalid

2 Person Treehouse | Invalid

Table 3-2

A test case of all
invalid data values.
This is not a good
approach.

Table 3-3

A set of test cases
varying invalid
values one by one.

Table 3-4

A set of test cases
varying invalid
values one by one
but also varying the
valid values.
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Another approach to using equivalence classes 1s to examine the
outputs rather than the inputs. Divide the outputs into
equivalence classes, then determine what input values would
cause those outputs. This has the advantage of guiding the tester
to examine, and thus test, every different kind of output. But this
approach can be deceiving. In the previous example, for the
human resources system, one of the system outputs was NO, that
1s, Don’t Hire. A cursory view of the inputs that should cause
this output would yield {0, 1, ..., 14, 15}. Note that this 1s not
the complete set. In addition {55, 56, ..., 98, 99} should also
cause the NO output. It’s important to make sure that all
potential outputs can be generated, but don’t be fooled into
choosing equivalence class data that omits important inputs.

Examples

Example 1

Referring to the Trade Web page of the Brown & Donaldson
Web site described in Appendix A, consider the Order Type
field. The designer has chosen to implement the decision to Buy
or Sell through radio buttons. This 1s a good design choice
because 1t reduces the number of test cases the tester must create.
Had this been implemented as a text field in which the user
entered “Buy” or “Sell” the tester would have partitioned the
valid inputs as { Buy, Sell} and the invalids as { Trade, Punt, ...}.
What about “buy”, “bUy”, “BUY”? Are these valid or invalid
entries? The tester would have to refer back to the requirements
to determine their status.

With the radio button implementation no invalid choices exist, so

none need to be tested. Only the valid inputs {Buy, Sell} need to
be exercised.

Insight

Let your designers
and programmers
know when they
have helped you.
They'll appreciate
the thought and
may do it again.
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Example 2

Again, referring to the Trade Web page, consider the Quantity
field. Input to this field can be between one and four numeric
characters (0,1, ..., 8,9) with a valid value greater or equal to 1
and less than or equal to 9999. A set of valid inputs 1s {1, 22,
333, 4444} while invalid inputs are {-42, 0, 12345, SQE,
$#@%}.

Example 3

On the Trade page the user enters a ticker Symbol indicating the
stock to buy or sell. The valid symbols are {A, AA, AABC,
AAC, ..., ZOLT, ZOMX, ZONA, ZRAN}. The invalid symbols
are any combination of characters not included in the vahd list.
A set of valid inputs could be {A, AL, ABE, ACES, AKZOY }
while a set of invalids could be {C, AF, BOB, CLUBS,
AKZAM, 42, @#35%}.

Example 4

Rarely will we create separate sets of test cases for each input.
Generally 1t 1s more efficient to test multiple 1nputs
simultaneously within tests. For example, the following tests
combine Buy/Sell, Symbol, and Quantity.

Buy/Sell |  Symbol Quantity 1 Result
Buy A 10 Vahd
Buy C 20 Invalid
Buy A 0 Invahd
Se ACES 10 Valid
Se BOB 33 Invalid
Se ABE _ -3 Invalid

Insight

Very often your
designers and
programmers use
GUI design tools
that can enforce
restrictions on the
length and content
of input fields.
Encourage their
use. Then your
testing can focus on
making sure the
requirement has
been implemented
properly with the
tool.

For More
Information

Click on the
Symbol Lookup
button on the B&D
Trade page to see
the full list of stock
symbols.

Table 3-5

A set of test cases
varying invalid
values one by one.
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Applicability and Limitations

Equivalence class testing can significantly reduce the number of
test cases that must be created and executed. It 1s most suited to
systems in which much of the input data takes on values within
ranges or within sets. It makes the assumption that data in the
same equivalence class is, in fact, processed in the same way by
the system. The simplest way to validate this assumption is to
ask the programmer about their implementation.

Equivalence class testing i1s equally applicable at the unit,
Integration, system, and acceptance test levels. All it requires are
inputs or outputs that can be partitioned based on the system’s
requirements.

Summary

e Equivalence class testing 1s a technique used to reduce
the number of test cases to a manageable size while still
maintaining reasonable coverage.

e This simple technique 1s used intuitively by almost all
testers, even though they may not be aware of it as a
formal test design method.

e An equivalence class consists of a set of data that is
treated the same by the module or that should produce
the same result. Any data value within a class is
equivalent, in terms of testing, to any other value.

35



36

A Practitioner’s Guide to Software Test Design

Practice

l.

The following exercises refer to the Stateless University
Registration System Web site described in Appendix B.
Define the equivalence classes and suitable test cases for
the following:

ZIP Code—five numeric digits.

State—the standard Post Office two-character
abbreviation for the states, districts, territories, etc.
of the United States.

LLast Name—one through fifteen characters
(including alphabetic characters, periods, hyphens,
apostrophes, spaces, and numbers).

User ID—eight characters at least two of which are
not alphabetic (numeric, special, nonprinting).

Student ID—eight characters. The first two represent
the student’s home campus while the last six are a
unique six-digit number. Valid home campus
abbreviations are: AN, Annandale; LC, Las Cruces;
RW, Riverside West; SM, San Mateo; TA, Talbot;
WE, Weber; and WN, Wenatchee.
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The Prince looked down at the motionless form of Sleeping
Beauty, wondering how her supple lips would feel against his
own and contemplating whether or not an Altoid was strong
enough to stand up against the kind of morning breath only a
hundred years' nap could create.

— Lynne Sella
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Introduction

Equivalence class testing is the most basic test design
technique. It helps testers choose a small subset of possible
test cases while maintaining reasonable coverage. Equivalence
class testing has a second benefit. It leads us to the idea of
boundary value testing, the second key test design technique to
be presented.

In the previous chapter the following rules were given that
indicate how we should process employment applications based
on a person’s age. The rules were:

0-16  Don’t hire
16-18 Can hire on a part-time basis only
18-55 Can hire as a full-time employee

55-99 Don’t hire

Notice the problem at the boundaries—the “edges” of each class.
The age “16” is included in two different equivalence classes (as
are 18 and 55). The first rule says don’t hire a 16-year-old. The
second rule says a 16-year-old can be hired on a part-time basis.

Boundary value testing focuses on the boundaries simply
because that 1s where so many defects hide. Experienced testers
have encountered this situation many times. Inexperienced
testers may have an intuitive feel that mistakes will occur most
often at the boundaries. These defects can be in the requirements
(as shown above) or in the code as shown below:

Key Point

Boundary value
testing focuses on
the boundaries
because that is
where so many
defects hide.
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If (applicantAge >= 0 && applicantAge <=16)
hireStatus="NO",

If (applicantAge >= 16 && applicantAge <=18)
hireStatus="PART";

If (applicantAge >= 18 && applicantAge <=55)
hireStatus="FULL";

If (applicantAge >= 55 && applicantAge <=99)
hireStatus="NO";

Of course, the mistake that programmers make 1s coding
inequality tests improperly. Writing > (greater than) instead of 2
(greater than or equal) is an example.

The most efficient way of finding such defects, either in the
requirements or the code, is through inspection. Gilb and
Graham'’s book, Software Inspection, is an excellent guide to this
process. However, no matter how effective our inspections, we
will want to test the code to verify 1ts correctness.

Perhaps this 1s what our organization meant:

0-15 Don’t hire
16-17 Can hire on a part-time basis only

18-54 Can hire as full-time employees
5599 Don’t hire

What about ages -3 and 1017 Note that the requirements do not
specify how these values should be treated. We could guess but
“guessing the requirements” 1s not an acceptable practice.

The code that implements the corrected rules 1s:

If (applicantAge >= 0 && applicantAge <=15)
hireStatus="NO";

If (applicantAge >= 16 && applicantAge <=17)
hireStatus="PART";

41
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If (applicantAge >= 18 && applicantAge <=54)
hireStatus="FULL";

If (applicantAge >= 55 && applicantAge <=99)
hireStatus="NO";

The interesting values on or near the boundaries in this example
are {-1, 0, 1}, {15, 16, 17}, {17, 18, 19}, {54, 55, 56}, and {98,
99, 100}. Other values, such as {-42, 1001, FRED, %$#@ )
might be included depending on the module’s documented pre-
conditions.

Technique

The steps for using boundary value testing are simple. First,
identify the equivalence classes. Second, identify the boundaries
of each equivalence class. Third, create test cases for each
boundary value by choosing one point on the boundary, one
point just below the boundary, and one point just above the
boundary. “Below™ and “above™ are relative terms and depend
on the data value’s units. If the boundary 1s 16 and the unit is
“integer” then the “below” point 1s 15 and the “above™ point 1s
17. If the boundary is $5.00 and the unit is “US dollars and
cents” then the below point is $4.99 and the above point is $5.01.
On the other hand, if the value is $5 and the unit is “US dollars”
then the below point is $4 and the above point is $6.

Note that a point just above one boundary may be in another
equivalence class. There 1s no reason to duplicate the test. The
same may be true of the point just below the boundary.

You could, of course, create additional test cases farther from the
boundaries (within equivalence classes) if you have the
resources. As discussed in the previous chapter, these additional

test cases may make you feel warm and fuzzy, but they rarely
discover additional defects.

Key Point

Create test cases
for each boundary
value by choosing
one point on the
boundary, one point
just below the
boundary, and one
point just above the
boundary.
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Boundary value testing is most appropriate where the input is a
continuous range of values. Returning again to the Goofy
Mortgage Company, what are the interesting boundary values?
For monthly income the boundaries are $1,000/month and
$83,333/month (assuming the units to be US dollars).

Poundary Values

l '

N R

$1,000/month $83,333/month

Test data input of {$999, $1,000, $1,001) on the low end and
{$83,332, $83,333, $83,334} on the high end are chosen to test
the boundaries.

Because GMC will write a mortgage for one through five
houses, zero or fewer houses is not a legitimate input nor is six
or greater. These 1dentify the boundaries for testing.

Boundary Values

L 4 L 4
%
0 1 2 3 4 5 6

Rarely will we have the time to create individual tests for every
boundary value of every input value that enters our system. More

Figure 4-1

Boundary values for

a continuous range
of inputs.

Figure 4-2

Boundary values for
a discrete range of
inputs.
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often, we will create test cases that test a number of input fields

simultaneously.
Number
of Result Description
Income .
Dwellings .
$1,000 | Valid Min income, min dwellings
$83,333 1 Valid Max income, min dwellings
$1,000 5 Valid Min income, max dwellings
$83,333 5 Valid Max income, max dwellings
$1,000 0 Invalid Min income. below min dwellings
$1,000 6 Invalid | Min income, above max dwellings
$83,333 0 Invalid | Max income, below min dwellings
. $83,333 6 Invalid | Max income, above max dwellings
$999 l Invalic Below min income, min dwellings
$83,334 l nvalic Above max income, min dwellings
$999 S nvalid | Below min income, max dwellings
$83,334 5 Invalid | Above max income, max dwellings

Plotting “monthly income” on the x-axis and
dwellings” on the y-axis shows the “locations™ of the test data

"

points.
@ g
5 @ & o
| @ f—-o
] =
$1,000/month $83,333/month

Note that four of the input combinations are on the boundaries -
while eight are just outside. Also note that the points outside
always combine one valid value with one invalid value (just one

unit lower or one unit higher).

‘number of

Table 4-1

A set of test cases
containing
combinations of
valid (on the
boundary) values
and invalid (off the
boundary) points.

Figure 4-3

Data points on the
boundaries and
data points just
outside the
boundaries.
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Examples

Boundary value testing is applicable to the structure (length and
character type) of input data as well as its value. Consider the
following two examples:

Example 1

Referring to the Trade Web page of the Brown & Donaldson
Web site described in Appendix A, consider the Quantity field.
Input to this field can be between one and four numeric

characters (0,1, ..., 8,9). A set of boundary value test cases for
the length attribute would be {0, 1, 4, 5} numeric characters.

Example 2

Again, on the Trade page, consider the Quantity field, but this
time for value rather than structure (length and character type).
Whether the transaction is Buy or Sell, the minimum legitimate
value is 1 so use {0, 1, 2} for boundary testing. The upper limit
on this field’s value is more complicated. If the transaction 1s
Sell, what 1s the maximum number of shares that can be sold? It
is the number currently owned. For this boundary use
{sharesOwned-1, sharesOwned, sharesOwned+1}. If the

transaction is Buy, the maximum value (number of shares to be
purchased) is defined as

shares = (accountBalance - commission) / sharePrice

assuming a fixed commission. Use {shares-1, shares, shares+1}
as the boundary value test cases.

45
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Applicability and Limitations

Boundary value testing can significantly reduce the number of
test cases that must be created and executed. It 1s most suited to

systems in which much of the input data takes on values within
ranges or within sets.

Boundary value testing 1s equally applicable at the unit,
Integration, system, and acceptance test levels. All it requires are
inputs that can be partitioned and boundaries that can be
identified based on the system’s requirements.

Summary

e While equivalence class testing 1s useful, its greatest
contribution 1s to lead us to boundary value testing.

¢ Boundary value testing is a technique used to reduce the
number of test cases to a manageable size while still
maintaining reasonable coverage.

e Boundary value testing focuses on the boundaries
because that 1s where so many defects hide. Experienced
testers have encountered this situation many times.
Inexperienced testers may have an intuitive feel that
mistakes will occur most often at the boundaries.

e C(Create test cases for each boundary value by choosing
one point on the boundary, one point just below the
boundary, and one point just above the boundary.
“Below” and “above” are relative terms and depend on
the data value’s units.
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Practice

1. The following exercises refer to the Stateless University
Registration System Web site described in Appendix B.
Define the boundaries, and suitable boundary value test
cases for the following:

a. ZIP Code—five numeric digits.

b. First consider ZIP Code just in terms of digits. Then,
determine the lowest and highest legitimate ZIP
Codes in the United States. For extra credit’,
determine the format of postal codes for Canada and
the lowest and highest valid values.

¢. Last Name—one through fifteen characters
(including alphabetic characters, periods, hyphens,
apostrophes, spaces, and numbers). For extra credit’
create a few very complex Last Names. Can you
determine the “rules” for legitimate Last Names? For

additional extra credit use a phonebook from another
country—try Finland or Thailand.

d. User ID—eight characters at least two of which are
not alphabetic (numeric, special, nonprinting).

e. Course ID—three alpha characters representing the
department followed by a six-digit integer which is
the unique course 1dentification number. The possible
departments are:

" There actually is no extra credit, so do it for fun.

47
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PHY — Physics

EGR - Engineering

ENG - English

LAN - Foreign languages
CHM - Chemistry

MAT - Mathematics
PED - Physical education
SOC - Sociology
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Chapter 5 -
Decision Table Testing

I'd stumbled onto solving my first murder case, having found
myself the only eyewitness, yet no matter how frantically [
pleaded with John Law that the perp was right in front of them
and the very dame they'd been grilling - the sultry but devious
Miss Kitwinkle, who played the grieving patsy the way a concert
pianist player plays a piano - the cops just kept smiling and
stuffing crackers in my beak.

— Chris Esco
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Introduction

Decisiﬂn tables are an excellent tool to capture certain kinds
of system requirements and to document internal system
design. They are used to record complex business rules that a
system must implement. In addition, they can serve as a guide to
creating test cases.

Decision tables are a vital tool in the tester’s personal toolbox.

Unfortunately, many analysts, designers, programmers, and
testers are not familiar with this technique.

Technique

Decision tables represent complex business rules based on a set
of conditions. The general form is:

Rule 1 | Rule 2 Rule p

Conditions
Condition-1
Condition-2

Condition-m
Actions

Action-1

Action-2

Action-n

Conditions | through m represent various input conditions.
Actions 1 through n are the actions that should be taken
depending on the various combinations of input conditions. Each

Table 5-1

The general form of
a decision table.
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of the rules defines a unique combination of conditions that
result in the execution (“firing”) of the actions associated with
that rule. Note that the actions do not depend on the order in
which the conditions are evaluated, but only on their values. (All
values are assumed to be available simultaneously.) Also, actions
depend only on the specified conditions, not on any previous
input conditions or system state.

Perhaps a concrete example will clarify the concepts. An auto
insurance company gives discounts to drivers who are married
and/or good students. Let’s begin with the conditions. The
following decision table has two conditions, each one of which
takes on the values Yes or No.

Rule 1 Rule 2 Rule 3 Rule 4

Conditions
Married? Yes Yes No No
Good Student? Yes No Yes No

Note that the table contains all combinations of the conditions.
Given two binary conditions (Yes or No), the possible
combinations are {Yes, Yes}, {Yes, No}, {No, Yes}, and {No,
No}. Each rule represents one of these combinations. As a tester
we will verify that all combinations of the conditions are
defined. Missing a combination may result in developing a
system that may not process a particular set of inputs properly.

Now for the actions. Each rule causes an action to “fire.” Each

rule may specify an action unique to that rule, or rules may share
actions.

FENENENESEENENAES
Table 5-2

A decision table
with two binary
conditions.
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Rule1 | Rule 2 Rule 3 Rule 4
Conditions
Married? Yes Yes No No
Good Student? Yes No Yes No
Actions
Discount ($) 60 25 50 0

Decision tables may specify more than one action for each rule.
Again, these rules may be unique or may be shared.

Rule 1 Rule 2 | Rule3 Rule 4
Conditions
Condition-1 Yes Yes No No
Condition-2 Yes No Yes No
Actions _
Action-1 Do X DoY Do X Do Z
Action-2 Do A DoB Do B Do B

In this situation, choosing test cases 1s simple—each rule
(vertical column) becomes a test case. The Conditions specify
the inputs and the Actions specify the expected results.

While the previous example uses simple binary conditions,
conditions can be more complex.

Rule 1 | Rule 2 Rule 3 Rule 4
Conditions
Condition- | 0-1 [-10 10-100 | 100-1000
Condition-2 <5 5 6 or7 >7
Actions
Action-1 Do X DoY Do X Do Z
Action-2 Do A Do B Do B Do B

Table 5-3

Adding a single
action to a decision
table.

Table 5-4

A decision table
with multiple
actions.

Table 5-5

A decision table
with non-binary
conditions.
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In this situation choosing test cases is slightly more complex—
each rule (vertical column) becomes a test case but values
satisfying the conditions must be chosen. Choosing appropriate
values we create the following test cases:

Test Case ID | Condition-1 | Condition-2 | Expected Result
TCl 0 3| DoX/DoA
TC2 5 5| DoY/DoB
TC3 50 7| DoX/DoB
TC4 500 10 | DoZ/Do B

If the system under test has complex business rules, and if your
business analysts or designers have not documented these rules
in this form, testers should gather this information and represent
it in decision table form. The reason is simple. Given the system
behavior represented in this complete and compact form, test
cases can be created directly from the decision table.

In testing, create at least one test case for each rule. If the rule’s
conditions are binary, a single test for each combination 1s
probably sufficient. On the other hand, if a condition 1s a range
of values, consider testing at both the low and high end of the

range. In this way we merge the ideas of Boundary Value testing
with Decision Table testing.

To create a test case table simply change the row and column
headings:

Table 5-6

Sample test cases.

Key Point

Create at least one
test case for each
rule.
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TESt TESt T'ESt T‘ESt SEEEENEEEEEEEEEEE
Case 1 | Case2 | Case3 Case 4 Table 5-7
I“Pllts A decision table
Condition-1 Yes Yes No No converted to a test
Condition-2 Yes | No Yes No case table.
Expected
Results .
Action-1 Do X DoY Do X Do Z
Action-2 Do A Do B Do B Do B
Examples
Decision Table testing can be used whenever the system must
implement complex business rules. Consider the following two
examples:
SEEEREEEEEEEEEAEEE
Table 5-8
Example 1 anie
A decision table for
. h
Referring to the Trade Web page of the Brown & Donaldson Ljnifg::n&aw
Web site described in Appendix A, consider the rules associated order.
with a Buy order.
Rule | Rule | Rule | Rule | Rule | Rule | Rule | Rule
1 2 3 4 5 6 7 8
Conditions
Valid Symbol No No No No Yes Yes Yes Yes
Valid Quantity No No Yes Yes No No Yes Yes
Sufficient Funds No Yes No Yes No Yes No Yes
Actions
Buy? No No No No No No No Yes

Admittedly, the outcome 1s readily apparent. Only when a valid
symbol, valid quantity, and sufficient funds are available should
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the Buy order be placed. This example was chosen to illustrate
another concept.

Examine the first four columns. If the Symbol is not valid, none
of the other conditions matter. Often tables like this are
collapsed, rules are combined, and the conditions that do not
affect the outcome are marked “DC” for “Don’t Care.” Rule |
now indicates that if the Symbol is not valid, ignore the other
conditions and do not execute the Buy order.

Table 5-9

A collapsed
decision table
reflecting "Don't
Care” conditions.

Rule | Rule | Rule | Rule | Rule
1 2 3 4 5
Conditions
Valid Symbol No | Yes | Yes | Yes | Yes
Valid Quantity DC No No Yes | Yes
Sufficient Funds | DC No Yes No Yes
Actions
Buy? No No No No Yes

Note also that Rule 2 and Rule 3 can be combined because
whether Sufficient Funds are available does not affect the action.

Rule | Rule | Rule | Rule
1 2 3 4
Conditions
Valid Symbol No Yes | Yes | Yes
Valid Quantity DC No Yes | Yes
Sufficient Funds | DC DC No Yes
Actions
Buy? No No No | Yes

While this 1s an excellent idea from a development standpoint
because less code 1s written, it 1s dangerous from a testing
standpoint. It 1s always possible that the table was collapsed
incorrectly or the code was written improperly. The un-collapsed
table should always be used as the basis for our test case design.

Table 5-10

A further collapsed
decision table
reflecting “Don’t
Care” conditions.
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Example 2

The following screen 1s from the Stateless University
Registration System. It is used to enter new students into the

system, to modify student information, and to delete students
from the system.

- Ve e r | o |
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e ] B et - y Flgl.ll"ﬂ 5-1
UStmhu SURS Student
nivaersity Database
Maintenance
SURS Student Database Malntenance Screen Screen.
b 5t %M [l"____— _vgzetame [ Lauttiyea |
i I[ :. !.- r'-"_- .. 1 [ [

I
.\.I.!l- ,!' 1

i E -'r'-_ -l""'.' ¥ '.

LBec | Paiw | e | e |

To enter a new student, enter name, address, and telephone
information on the upper part of the screen and press Enter. The
student is entered into the database and the system returns a new
StudentID. To modify or delete a student, enter the StudentID,

select the Delete or Modify radio button and press Enter. The
decision table reflecting these rules follows:
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Rule | Rule | Rule | Rule | Rule | Rule | Rule | Rule
1 2 3 4 5 6 7 8
Conditions
Edn;lteﬂred Student No No No No No No No No
Eln[;ered Student No No No | No Yes | Yes | Yes | Yes
Selected Modify | No No | Yes | Yes | No No | Yes | Yes
Selected Delete No Yes No Yes No Yes No Yes
Actions
Create new No | No | No | No | No | No | No | No
student
Modify Student No No No No No No | Yes | No
Delete Student No No No No No Yes No No
AREEEEEEEEEEEEEEn
Table 5-11
A decision table for
Stateless University
Registration
System.
Rule | Rule | Rule | Rule | Rule | Rule | Rule | Rule
9 10 11 12 13 14 15 16
Conditions
El':;md Student Yes | Yes Yes Yes Yes Yes Yes Yes
El“[‘)md Student | vl No | No | No | Yes | Yes | Yes | Yes
Selected Modify | No No Yes | Yes No No Yes | Yes
Selected Delete No Yes No Yes No Yes No Yes
Actions
Create new Yes No No No No No No No
student
Modify Student No No | Yes | No No No No No
Delete Student No No No No No No No No
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Rules 1 through 8 indicate that no data was entered about the
student. Rules 1 through 4 indicate that no StudentID was
entered for the student, thus no action is possible. Rules 5
through 8 indicate the StudentID was entered. In these cases
creating a new Student is not proper. Rule 5 does not request
either modification or deletion so neither is done. Rules 6 and 7
request one function and so they are performed. Note that Rule 8
indicates that both modification and deletion are to be performed
SO no action 1s taken.

Rules 9 through 16 indicate that data was entered about the
student. Rules 9 through 12 indicate that no StudentID was
entered so these rules refer to a new student. Rule 9 creates a
new student. Rule 10 deletes the student. Rule 11 allows
modification of the student’s data. Rule 12 requests that both
modification and deletion are to be performed so no action is
taken. Rules 13 through 16 supply student data indicating a new
student but also provide a StudentID indicating an existing
student. Because of this contradictory input, no action is taken.
Often, error messages are displayed in these situations.

Applicability and Limitations

Decision Table testing can be used whenever the system must
implement complex business rules when these rules can be
represented as a combination of conditions and when these
conditions have discrete actions associated with them.
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Summary

e Decision tables are used to document complex business
rules that a system must implement. In addition, they
serve as a guide to creating test cases.

e Conditions represent various input conditions. Actions
are the processes that should be executed depending on
the various combinations of input conditions. Each rule
defines a unique combination of conditions that result in
the execution (“firing”’) of the actions associated with
that rule.

e C(reate at least one test case for each rule. If the rule’s
conditions are binary, a single test for each combination
1s probably sufficient. On the other hand, if a condition
1s a range of values, consider testing at both the low and
high end of the range.

Practice

1. Attending Stateless University 1s an expensive
proposition. After all, they receive no state funding. Like
many other students, those planning on attending apply
for student aid using FAFSA, the Free Application for
Federal Student Aid. The following instructions were
taken from that form. Examine them and create a
decision table that represents the FAFSA rules. (Note:
You can’t make up stuff like this.)

Step Four: Who is considered a parent in this
step?
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Read these notes to determine who is considered a
parent for purposes of this form. Answer all

questions in Step Four about them, even if you
do not live with them.

Are you an orphan, or are you or were you (until
age 18) a ward/dependent of the court? If Yes, skip
Step Four. If your parents are both living and
married to each other, answer the questions about
them. If your parent is widowed or single, answer
the questions about that parent. If your widowed
parent is remarried as of today, answer the
questions about that parent and the person whom
your parent married (your stepparent). If your
parents are divorced or separated, answer the
questions about the parent you lived with more
during the past 12 months. (If you did not live with
one parent more than the other, give answers
about the parent who provided more financial
support during the last 12 months, or during the
most recent year that you actually received support
from a parent.) If this parent is remarried as of
today, answer the questions on the rest of this form
about that parent and the person whom your parent
married (your stepparent).
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Pairwise Testing

Anton was attracted to Angela like a moth to a flame - not just
any moth, but one of the giant silk moths of the genus
Hyalophora, perhaps Hyalophora euryalus, whose great red-
brown wings with white basal and postmedian lines flap almost
languorously until one ignites in the flame, fanning the
conflagration to ever greater heights until burning down to the
hirsute thorax and abdomen, the fat-laden contents of which
provide a satisfying sizzle to end the agony.

— Andrew Amlen
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Introduction

A

s they used to say on Monty Python, “And now for
something completely different.”

Consider these situations:

A Web site must operate correctly with different
browsers—Internet Explorer 5.0, 5.5, and 6.0, Netscape
6.0, 6.1, and 7.0, Mozilla 1.1, and Opera 7; using
different plug-ins—RealPlayer, MediaPlayer, or none;
running on different client operating systems—Windows
95, 98, ME, NT, 2000, and XP; receiving pages from
different servers—IIS, Apache, and WebLogic; running

on different server operating systems—Windows NT,
2000, and Linux.

A bank has created a new data processing system that is
ready for testing. This bank has different kinds of

customers—consumers, very important consumers,
businesses, and non-profits; different kinds of
accounts—checking, savings, mortgages, consumer

loans, and commercial loans; they operate in different

states, each with different regulations—California,
Nevada, Utah, Idaho, Arizona, and New Mexico.

In an object-oriented system, an object of class A can
pass a message containing a parameter P to an object of
class X. Classes B, C, and D inherit from A so they too
can send the message. Classes Q, R, S, and T inherit
from P so they too can be passed as the parameter.
Classes Y and Z inherit from X so they too can receive
the message.

Web
Combinations

8 browsers

3 plug-ins

6 client operating
systems

3 servers

3 server OS

1,296 combinations.

Bank
Combinations

4 customer types
5 account types
6 states

120 combinations.

00
Combinations
4 senders

5 parameters
3 receivers

60 combinations.




Chapter 6 - Pairwise Testing 63

What do these very different situations all have in common?
Each has a large number of combinations that should be tested.
Each has a large number of combinations that may be risky if we
do not test. Each has such a large number of combinations that
we may not have the resources to construct and run all the tests,
there are just too many. We must, somehow, select a reasonably
sized subset that we could test given our resource constraints.
What are some ways of choosing such a subset? This list starts
with the worst schemes but does improve:

Worst

Don’t test at all. Simply give up because the number of
input combinations, and thus the number of test cases, 1s
just too great.

Test all combinations [once], but delay the project so it
misses its market window so that everyone quits from
stress, or the company goes out of business.

Choose one or two tests and hope for the best.

Choose the tests that you have already run, perhaps as
part of programmer-led testing. Incorporate them into a
formal test plan and run them again.

Choose the tests that are easy to create and run. Ignore
whether they provide useful information about the
quality of the product.

Make a list of all the combinations and choose the first
few.

Make a list of all the combinations and choose a random
subset.

Insight

Students in my
classes often have
a very difficult time
thinking of bad
ways to do things.
Cultivate the skill of
choosing poorly. It
will be invaluable in
evaluating others’
ideas.

Can You Believe
This?

A student in one of
my classes shared
this story: His
organization uses a
process they call
“Post-Installation
Test Planning.” It
sounds impressive
until you decipher it.
Whatever tests they
happen to run that
happen to pass are
documented as
their Test Plan.




64 A Practitioner’s Guide to Software Test Design

e By magic, choose a specially selected, fairly small
subset that finds a great many defects—more than you
would expect from such a subset.

Best

This last scheme sounds like a winner (but it 1s a little vague).
The question 1s—what 1s the “magic” that allows us to choose
that “specially selected” subset?

The answer 1s not to attempt to test all the combinations for all
the values for all the variables but to test all pairs of variables.
This significantly reduces the number of tests that must be
created and run. Consider the significant reductions in test effort
in these examples:

e [If a system had four different input parameters and each
one could take on one of three different values, the
number of combinations is 3* which is 81. It is possible

to cover all the pairwise input combinations in only nine
tests.

e If a system had thirteen different input parameters and
each one could take on one of three different values, the
number of combinations is 3" which is 1,594,323, It is
possible to cover all the pairwise input combinations in
only fifteen tests.

e If a system had twenty different input parameters and
each one could take on one of ten different values, the
number of combinations is 10, It is possible to cover all
the pairwise input combinations in only 180 tests.

There 1s much anecdotal evidence about the benefit of pairwise
testing. Unfortunately, there are only a few documented studies:

e In a case study published by Brownlie of AT&T
regarding the testing of a local-area network-based

Insight

Random selection
can be a very good
approach to
choosing a subset
but most people
have a difficult time
choosing truly
randomly.
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electronic mail system, pairwise testing detected 28
percent more defects than their original plan of
developing and executing 1,500 test cases (later reduced
to 1,000 because of time constraints) and took 50 percent
less effort.

e A study by the National Institute of Standards and
Technology published by Wallace and Kuhn on software
defects in recalled medical devices reviewed fifteen
years of defect data. They concluded that 98 percent of
the reported software flaws could have been detected by
testing all pairs of parameter settings.

e Kuhn and Reilly analyzed defects recorded in the
Mozilla Web browser database. They determined that
pairwise testing would have detected 76 percent of the
reported errors.

Why does pairwise testing work so well? I don’t know. There is
no underlying “software physics™ that requires it. One hypothesis
1s that most defects are either single-mode defects (the function
under test simply does not work and any test of that function
would find the defect) or they are double-mode defects (it is the
pairing of this function/module with that function/module that
fails even though all other pairings perform properly). Pairwise
testing defines a minimal subset that guides us to test for all
single-mode and double-mode defects. The success of this
technique on many projects, both documented and
undocumented, is a great motivation for its use.

Note

Pairwise testing may
not choose
combinations which
the developers and
testers know are
either frequently
used or highly risky.
If these combinations
exist, use the
pairwise tests, then
add additional test
cases to minimize
the risk of missing an
important
combination.
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Technique

Two different techniques are used to identify all the pairs for
creating test cases—orthogonal arrays and the Allpairs
algorithm.

Orthogonal Arrays

What are orthogonal arrays? The origin of orthogonal arrays can
be traced back to Euler, the great mathematician, in the guise of
Latin Squares. Genichi Taguchi has popularized their use in
hardware testing. An excellent reference book 1is Quality
Engineering Using Robust Design by Madhav S. Phadke.

Consider the numbers 1 and 2. How many pair combinations
(combinations taken two at a time) of ‘1" and ‘2’ exist? {1,1},
{1L2}, {2,1} and {2,2}. An orthogonal array i1s a two-
dimensional array of numbers that has this interesting property—
choose any two columns in the array. All the pairwise
combinations of its values will occur in every pair of columns.
Let’s examine an L4(2°) array:

The gray column headings and row numbers are not part of the
orthogonal array but are included for convenience in referencing
the cells. Examine columns 1 and 2—do the four combinations
of 1 and 2 all appear in that column pair? Yes, and in the order
listed earlier. Now examine columns 1 and 3—do the four

Table 6-1

L4+(2°) Orthogonal
Array
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combinations of 1 and 2 appear in that column pair? Yes,
although in a different order. Finally, examine columns 2 and
3—do the four combinations appear in that column pair also?
Yes they do. The L4(2°) array is orthogonal; that is, choose any
two columns, all the pairwise combinations will occur in all the
column pairs.

A note about the curious (but standard) notation: L; means an
orthogonal array with four rows, (2%) is not an exponent. It

means that the array has three columns, each with either a 1 or a
2.

Maximum value = 2, 3, ..., N

\ Number of columns

L(2')

N

Number of rows

Let’s consider a larger orthogonal array. Given the numbers 1, 2
and 3, how many pair combinations of 1, 2, and 3 exist? {1,1},
{1,2}, {1,3}, {2,1}, {2,2}, {2,3}, {3,1}, {3,2}, and {3,3}. Below
is an Lo(3") array:

—
—t

6
7
8

1
3
2
2
2
3
3
3

W= W |—=WIN
Nj=|W|=|WNW|N
=W |=WWN

Important Note

As a tester you do
not have to create
orthogonal arrays, all
you must do is locate
one of the proper
size. Books, Web
sites, and automated
tools will help you do
this.

Figure 6-1

Orthogonal array
notation

Table 6-2

Ls(3") Orthogonal
Array
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Examine columns 1 and 2—do the nine combinations of 1, 2,
and 3 all appear in that column pair? Yes. Now examine columns
| and 3—do the nine combinations of 1, 2, and 3 appear in that
column pair? Yes, although in a different order. Examine
columns 1 and 4—do the nine combinations appear in that
column pair also? Yes they do. Continue on by examining other
pairs of columns—2 and 3, 2 and 4, and finally 3 and 4. The
Lo(3% array is orthogonal; that is, choose any two columns, all
the combinations will occur in all of the column pairs.

Note that not all combinations of 1s, 2s, and 3s appear in the
array. For example, {1,1,2}, {1,2,1}, and {2,2,2) do not appear.
Orthogonal arrays only guarantee that all the pair combinations
exist in the array. Combinations such as {2,2,2} are triples, not
pairs.

The following is an L,4(3°) orthogonal array. It has five columns,
each containing a 1, 2, or 3. Examine columns 1 and 2 for the
pair {1,1}. Does that pair exist in those two columns? Wait!
Don’t look at the array. From the definition of an orthogonal
array, what is the answer? Yes, that pair exists along with every
other pair of 1, 2, and 3. The pair {1,1} is in row 1. Note that
{1,1} also appears in row 6. Returning to the original description
of orthogonal arrays,

An orthogonal array is a two-dimensional array of
numbers that has this interesting property—choose any
two columns in the array. All the pairwise combinations
of its values will occur in every column pair.

This definition is not totally complete. Not only will all the pair
combinations occur in the array, but if any pair occurs multiple
times, all pairs will occur that same number of times. This 1s
because orthogonal arrays are *“balanced.” Examine columns 3

and 5—Ilook for {3,2}. That combination appears in rows 6 and
17.

Tool

The rdExpert tool
from Phadke
Associates
implements the
orthogonal array
approach. See
http://www.
phadkeassociates.
com
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In orthogonal arrays not all of the columns must have the same
range of values (1..2, 1..3, 1..5, etc.). Some orthogonal arrays are
mixed. The following is an L.s(2'37 orthogonal array. It has one
column of 1s and 2s, and seven columns of 1s, 2s, and 3s.

Table 6-3

L1s(3°) Orthogonal
Array
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Using Orthogonal Arrays

The process of using orthogonal arrays to select pairwise subsets
for testing is:

l.
2.
3.

Identify the variables.

Determine the number of choices for each variable.
Locate an orthogonal array which has a column for each
variable and values within the columns that correspond
to the choices for each variable.

Map the test problem onto the orthogonal array.
Construct the test cases.

If this seems rather vague at this point it’s time for an example.

Table 6-4

L1s(2'3") Orthogonal
Array

Reference

Neil J.A. Sloane
maintains a very
comprehensive
catalog of
orthogonal arrays at
http://www.
research.att.com/
~njas/oadir/
index.html
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Web-based systems such as Brown & Donaldson and the
Stateless University Registration System must operate in a
number of environments. Let’s execute the process step-by-step
using an orthogonal array to choose test cases. Consider the first
example in the introduction describing the software
combinations a Web site must operate with.

1. Identify the variables.

The variables are Browser, Plug-in, Client operating
system, Server, and Server operating system.

2. Determine the number of choices for each variable.

Browser — Internet Explorer 5.0, 5.5, and 6.0, Netscape
6.0, 6.1, and 7.0, Mozilla 1.1, and Opera 7 (8 choices).

Plug-in - None, RealPlayer, and MediaPlayer (3
choices).

Client operating system — Windows 95, 98, ME, NT,
2000, and XP (6 choices).

Server — IIS, Apache, and WebLogic (3 choices).

Server operating system - Windows NT, 2000, and
Linux (3 choices).

Multiplying 8 x 3 x 6 x 3 x 3 we find there are 1,296
combinations. For “complete” test coverage, each of
these combinations should be tested.

3. Locate an orthogonal array that has a column for
each variable and values within the columns that
correspond to the choices of each variable.

71
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What size array 1s needed? First, it must have five
columns, one for each variable in this example. The first
column must support eight different levels (1 through 8).
The second column must support three levels (1 through
3). The third requires six levels. The fourth and the fifth
each require three levels. The perfect size orthogonal
array would be 8'6'3” (one column of 1 through 8, one
column of 1 through 6, and three columns of 1 through
3). Unfortunately, one of this exact size does not exist.
When this occurs, we simply pick the next larger array.

The following orthogonal array meets our requirements.
It’s an Lm(8143) array. Orthogonal arrays can be found in
a number of books and on the Web. A favorite book is
Quality Engineering Using Robust Design by Madhav S.
Phadke. In addition, an excellent catalog is maintained
on the Web by Neil J.A. Sloane of AT&T. See
http://www.research.att.com/~njas/oadir/index.html.

The requirement of 8'6' (one column of 1 through 8 and
| column of 1 through 6) is met by 8 (two columns of |
through 8). The requirement of 3° (three columns of |
through 3) is met by 4° (three columns of 1 through 4).

The number of combinations of all the values of all the
variables 1s 1,296 and thus 1,296 test cases should be
created and run for complete coverage. Using this
orthogonal array, all pairs of all the values of all the
variables can be covered in only sixty-four tests, a 95
percent reduction in the number of test cases.

Important Note

As a tester you do
not have to create
orthogonal arrays. All
you must do is locate
one of the proper
size and then
perform the mapping
of the test problem
onto the array.
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Table 6-5

Les (8°4°)

Orthogonal Array

3

10

||| NN DM NN ||| NN
L . e e mp——
NN ||| T T || NN ||~ |T
- - .IIIIIIIIIIIIII1 + I.ﬂll.lll
R~ N|T (OO~ | MW WIINO(r~|MN |
J s III r._lllllllll ki
NN | =T || N DD <] |TIN|O|O|N
MiN|NNN|NN|N|N T T T <TiT|TI|TIVO|VIVIWN
Wk~




74 A Practitioner’s Guide to Software Test Design

7
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8

winivlw|=lalal=invw|lwio|a]={=|a]—
I R G Y B I Y A = B GBS L R B
winivljwo|=lalal=|=lalal=|w|nviv]|w|s

NN |- BN WIWININ

48

49

50
51
62
| 53 |
| 54
55

57
58
N

60

61

62
1 63
. 64

4. Map the test problem onto the orthogonal array.

The Browser choices will be mapped onto column 1 of
the orthogonal array. Cells containing a 1 will represent
IE 5.0; cells with a 2 will represent 1IES.S; cells with a 3
will represent IE 6.0; etc. The mapping is:

| & IES5.0

2 1ES55

3 IE6.0

4 < Netscape 6.0
5 <> Netscape 6.1
6 < Netscape 7.0
7 <> Moazilla 1.1
8 <> Opera 7

Partially filling in the first column gives:
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Table 6-6
partial mapping of

its first column.
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Is it clear what is happening? In column 1 (which we
have chosen to represent the Browser) every cell
containing a 1 1s being replaced with “IE 5.0.” Every cell
containing a 2 is being replaced with “IE 5.5.” Every cell
containing an 8 is being replaced with “Opera 7,” etc.

We’ll  continue by completing the mapping
(replacement) of all the cells in column 1. Note that the
mapping between the variable values and the 1s, 2s, and
3s 1s totally arbitrary. There 1s no logical connection
between “1” and IE 5.0 or *7” and Moazilla 1.1. But,
although the initial assignment is arbitrary, once chosen,
the assignments and use must remain consistent within
each column.
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Table 6-7

Lss (8°4°) with a full
mapping of its first
column.
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Now that the first column has been mapped, let’s
proceed to the next one. The Plug-in choices will be
mapped onto column 2 of the array. Cells containing a |
will represent None (No plug-in); cells with a 2 will
represent RealPlayer; cells with a 3 will represent
MediaPlayer; cells with a 4 will not be mapped at the
present time. The mapping is:

| «> None

2 < RealPlayer

3 «> MediaPlayer

4 « Not used (at this time)

Filling in the second column gives:



| Browser | Plugin | 3 | 4 | 5
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1 | IES5.0 None 1 1 1
2 IES0 | a1 3 4 4
3 ES0 | 4 2|4 4
4 IES.O0 | None 4 . 1 1
' 5 | IE5.0 | MediaPlayer 5 3 3
6. | IES50 | RealPlayer 7 2 2
IE 5.0 RealPlayer | 6 2 2
8 | IE5.0 | MediaPlayer 8 3 3
‘9 | IE6.0 4 1 3 3
“ IE 6.0 None 3 2 2
IE 6.0 None 2 2 | 2

12 - | 1E6.0 4 14 3 | 3
‘13 | IE6.0 RealPlayer 5 1 1
IE 6.0 MediaPlayer 7 4 4
15 IE 6.0 | MediaPlayer 6 | 4 | 4
16 | IE6.0 RealPlayer 8 1 1
17 IE5.5 | MediaPlayer | 1 2 | 1
18 IE 5.5 RealPlayer 3 3 4
19 | IES5 RealPlayer 2 3 4
20 | IE5.5 | MediaPlayer 4 2 1
E IE 5.5 None 5 | 4 3
IE5.5 4 7 1| 2

K IE 6.5 4 6 | 1 | 2
IE 5.5 None 8 4 | 3

K Net 6.0 | RealPlayer 1|4 3
Net 6.0 | MediaPlayer 3 1 2

Net 6.0 | MediaPlayer 2 1 2
28 | Net6.0 | RealPlayer 4 4 3
29 | Net6.0 | 4 5 2 1
30 | Net6.0 None 7 l 3 4
31| Net6.0 |  None 6 3 4
132 | Net6.0 4 8 | 2 1
33 | Neté6.1 RealPlayer 1 4 2
34 | Net6.1 | MediaPlayer 3 1 3
35 | Net6.1 | MediaPlayer 2 1 3
|36 | Net6.1 | RealPlayer 4 | 4 2
Net 6.1 4 5 2 4
138 | Net6.1 None 7 3 1
39 | Net6.1 None | 6 3 1
40 | Net6.1 4 8 2 4
41 | Moz 1.1 | MediaPlayer 1 2 4
42 | Moz 1.1 | RealPlayer 3 3 1
1 43 | Moz 1.1 | RealPlayer 2 3 1
44 | Moz 1.1 | MediaPlayer | 4 2 4
45 | Moz 1.1 None 5 4 2
46 - | Moz 1.1 4 7 1 3

Table 6-8

Lss (8°4%) with a full
mapping of its first
and second
columns.
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Moz 1.1 | 4

Moz 1.1 None
Net7.0 | 4

Net 7.0 None
Net 7.0 None
Net 7.0 4

Net 7.0 RealPlayer
Net 7.0 | MediaPlayer
Net 7.0 | MediaPlayer
Net 7.0 RealPlayer
Opera 7 None
Opera 7 4
Opera 7 4

| Opera7 None
Opera 7 | MediaPlayer
Opera7 | RealPlayer
Opera7 | RealPlayer
Opera 7 | MediaPlayer

OIMD N &N |W =D NS0
WINnIN|W|=|AS == A =W A |-
NIWIWIN || === WIWININ |

Now that the first and second columns have been

mapped, let’s proceed to map the next three columns
simultaneously.

The mapping for Client operating system is:

|1 <> Windows 95

2 <« Windows 98

3 < Windows ME

4 <> Windows NT

5 «> Windows 2000

6 < Windows XP

7 <> Not used (at this time)
8 <> Not used (at this time)

The mapping for Servers is:

| & IIS

2 <> Apache

3 < WebLogic

4 < Not used (at this time)
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The mapping for Server operating system 1s:

] & Windows NT
2 < Windows 2000
3 « Linux

4 < Not used (at this time)

Filling in the remainder of the columns gives:

Client

IE 5.0 None Win 95 1S Win NT
_ IE gﬂ 4 | WinME 4 4 Le« (8°4°) with a full
E IES0 | 4 Win 98 4 2 mapping of all its
IES.0 | None Win NT IS Win NT ‘
5 | IE5.0 | MediaPlayer | Win 2000 | WebLogic Linux
6 IE 5.0 RealPlayer 7 | _Apache Win 2000
7 IE 5.0 RealPlayer Win XP Apache | Win 2000
8 IE 5.0 | MediaPlayer | 8 Weblogic Linux
9 IE 6.0 4 Win95 | Weblogic Linux
10 IE 6.0 None WinME | Apache | Win 2000
11 | EB6.0 None Win98 | Apache Win 2000
12 | IE60 4 | WinNT | Weblogic |  Linux
13_ IE 6.0 RealPlayer | Win 2000 | IS Win NT
14 IE 6.0 | MediaPlayer | 7 | 4 |
15 | IE6.0 | MediaPlayer | Win XP | 4 4
16 IE 6.0 | RealPlayer 8 IS [ WinNT
17 IE 5.5 | MediaPlayer | Win 95 1 Apache Win NT
18 IE 5.5 RealPlayer | Win ME | WeblLogic | 4
19 | IES55 RealPlayer Win98 | WeblLogic 4
IES.5 | MediaPlayer | WinNT | Apache Win NT
IE 5.5 None Win 2000 | 4 Linux
IE 5.5 4 7 IS Win 2000
IE 5.5 I Wln XP | IS Win 2000
([ 24 | IES5 Nune 4 Linux
B Net 6.0 | RealPlayer WIn 95 4 Linux
Net 6.0 | MediaPlayer | Win ME | IS Win 2000
27 Net 6.0 | MediaPlayer | Win98 | IS Win 2000
Net 6.0 RealPlayer | Win NT 4 Linux
29 Net 6.0 4 Win 2000 | Apache Win NT
30 Net 6.0 None 7 WebLogic | 4
E Net 6.0 None | WinXP | WebLogic 4
Net 6.0 4 8 Apache Win NT
'33 | Net6.1 RealPlayer | Win 95 4 Win 2000
E Net 6.1 | MediaPlayer | Win ME IS | Linux
Net 6.1 | MediaPlayer | Win 98 1S Linux
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Were 1t not for the few cells that remain unassigned, the
mapping of the orthogonal array, and thus the selection
of the test cases, would be completed. What about the
unassigned cells—first, why do they exist?; second,
what should be done with them?

The unassigned cells exist because the orthogonal array
chosen was “too big.” The perfect size would be an
8'6'3" array; that is, one column that varies from 1 to 8;
one column that varies from 1 to 6; and three columns
that vary from 1 to 3. Unfortunately, that specific size
orthogonal array does not exist. Orthogonal arrays
cannot be constructed for any arbitrary size parameters.
They come in fixed, “quantum” sizes. You can construct
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one “this big”; you can construct one “that big”; but you
cannot necessarily construct one in-between. Famous
Software Tester Mick Jagger gives excellent advice
regarding this, “You can't always get what you want, But
if you try sometimes, You just might find, you get what
you need.”

If the perfect size array does not exist, choose one that is
slightly bigger and apply these two rules to deal with the
“excess.” The first rule deals with extra columns. If the
orthogonal array chosen has more columns than needed
for a particular test scenario, simply delete them. The
array will remain orthogonal. The second rule deals with
extra values for a variable. In the current example,
column 3 runs from 1 to 8 but only 1 through 6 is
needed. It is tempting to delete the rows that contain
these cells but DON'T. The “orthogonalness” may be
lost. Each row 1n the array exists to provide at least one
pair combination that appears nowhere else in the array.
If you delete a row, you lose that test case. Instead of
deleting them, simply convert the extra cells to valid
values. Some automated tools randomly choose from the
set of valid values for each cell while others choose one
valid value and use it in every cell within a column.
Either approach 1s acceptable. Using this second
approach, we’ll complete the orthogonal array. Note that
it may be difficult to maintain the “balanced” aspect of
the array when assigning values to these extra cells.

Famous Software
Tester

L

,
W

Mick Jagger
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I ) B Ol T
1 IE 5.0 None Win 95 IS |  WinNT
2 | IES0 |  None Win ME IS Win NT
3 IES0 |  None Win 98 IS Win NT
4 IESO | None Win NT IS Win NT
5 | IES5.0 | MediaPlayer | Win 2000 | WebLogic Linux
6 IE 5.0 | RealPlayer Win 95 Apache Win 2000

IE5.0 | RealPlayer | Win XP Apache Win 2000

8 | IE5.0 | MediaPlayer | Win98 | Weblogic |  Linux
9 IE 6.0 None Win95 | Weblogic |  Linux
10 IE6.0 |  None Win ME Apache | Win 2000
11 _| IE6.0 | None Win 98 Apache | Win 2000
12 | IE60 | None Win NT | Weblogic |  Linux
13 IE6.0 | RealPlayer | Win 2000 IS Win NT
14 IE 6.0 | MediaPlayer | Win 95 l 1S | Win NT
15 IE6.0 | MediaPlayer [ WinXP_| IS | WinNT

IE6.0 | RealPlayer | Win 98 IS | WinNT
17 IE5.5 | MediaPlayer | Win 95 l Apache | Win NT
18 IE 5.5 RealPlayer | Win ME | Weblogic Win NT
19 IE 6.5 RealPlayer Win98 | WebLogic Win NT
20 IE 5.5 MediaPlayer | Win NT Apache Win NT
21 IE 5.5 None Win 2000 IS Linux
22 IE 6.5 None Win 95 IS Win 2000
23 IE55 |  None Win XP [ Win 2000
24 IE 5.5 | None Win 98 r IS Linux
25 Net 6.0 | RealPlayer Win 95 IS Linux
26 Net 6.0 | MediaPlayer | Win ME IS Win 2000
27 Net 6.0 | MediaPlayer | Win 98 IS | Win 2000
28 Net 6.0 | RealPlayer | Win NT IS Linux
29 Net 6.0 None Win 2000 Apache | Win NT

30 | Net6.0 None Win 95 | WebLogic Win NT
31 Net 6.0 None | WinXP | WeblLogic | WinNT
32 Net 6.0 None Win 98 | Apache Win NT
33 Net 6.1 RealPlayer Win 95 1S Win 2000
34 Net 6.1 | MediaPlayer | Win ME 1S Linux
35 Net 6.1 | MediaPlayer | Win 98 IS Linux

(36 | Net6.1 RealPlayer | Win NT IS | _Win 2000
37_ Net 6.1 None Win 2000 Apache Win NT
38 Net 6.1 None Win95 | Weblogic | Win NT
39 | Net6.1 None | WinXP | WeblLogic [ WinNT
40 | Net6.1 | None Win98 | Apache Win NT
41 | Moz 1.1 | MediaPlayer | Win 95 Apache | Win NT
42 | Moz 1.1 RealPlayer | Win ME | Weblogic | Win NT
43 | Moz1.1 | RealPlayer | Win98 | Weblogic | WinNT
44 | Moz 1.1 | MediaPlayer | Win NT Apache Win NT
45 Moz 1.1 None | Win 2000 | IS Win 2000
46 | Moz 1.1 None Win 95 IS Linux
47 Moz 1.1 None Win XP IS Linux

Table 6-10

Les (8°4%) with a full
mapping of all its
columns including
the “extra” cells.
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5. Construct the test cases.

Now, all that remains is to construct a test case for each
row in the orthogonal array. Note that the array specifies
only the input conditions. An oracle (usually the tester)
1s required to determine the expected result for each test.

Allpairs Algorithm

Using orthogonal arrays is one way to identify all the pairs. A
second way 1s to use an algorithm that generates the pairs
directly without resorting to an “external” device like an
orthogonal array.

James Bach presents an algorithm to generate all pairs in Lessons
Learned in Software Testing. In addition, he provides a program
called “Allpairs” that will generate the all pairs combinations. It
1s available at http://www.satisfice.com. Click on "Test
Methodology" and look for Allpairs. Let’s apply the Allpairs
algorithm to the previous Web site testing problem.

Reference

James Bach
provides a tool to
generate all pairs
combinations at
http://www.satisfice.
com. Click on

Test Methodology
and look for Allpairs.

Ward Cunningham
provides further
discussion and the
source code for a
Java program to
generate all pairs
combinations at
http://fit.c2.com/
wiki.cgi?AllPairs.
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After downloading and unzipping, to use Allpairs create a tab-
delimited table of the variables and their values. If you are a
Windows user, the easiest way 1s to launch Excel, enter the data
into the spreadsheet, and then SaveAs a .txt file. The following
table was created and saved as input.txt.

Browser Client OS Plug-in Server Server OS  "eneNNRNRERRamRas
Table 6-11
IE 5.0 Win 95 None IS Win NT ,
IE 5.5 Win 98 Real Player Apache Win 2000 Input to the Allpairs
IE 6.0 Win ME Media Player WebLogic Linux program.
Netscape 6.0 Win NT
Netscape 6.1 Win 2000
Netscape 7.0 Win XP
Moazilla 1.1
Opera 7
Then run the Allpairs program by typing:
allpairs input.txt > output.txt
where output.txt will contain the list of all pairs test cases. The
following table was created:
Browser Client OS Plug-in Server Server OS
1 IE 5.0 Win 95 | None s Win NT SESSEssssssansses
2 IE 5.0 Win 98 Real Player Apache Win 2000 Table 6-12
3 IE 5.0 Win ME Media Player WebLogic Linux
4 IES5.5 Win 95 Real Player WebLogic Win NT Output from the
5 IE 5.5 Win 98 None "ns Linux A"pau's program.
6 IE 5.5 Win ME None Apache Win 2000
7 IE 6.0 Win 95 Media Player Apache Linux
8 IE 6.0 Win 98 Real Player s Win NT
9 IE 6.0 Win ME None WebLogic Win 2000
10 Netscape 6.0 Win ME Real Player s Linux
11 Netscape 6.0 Win NT Media Player s Win 2000
12 Netscape6.0 Win2000 None Apache Win NT
13  Netscape 6.1 Win NT None WebLogic Linux
14 Netscape 6.1 Win 2000 Media Player s Win 2000
15 Netscape 6.1 Win XP Real Player Apache Win NT
16 Netscape 7.0 Win NT Real Player Apache Win NT
17 Netscape 7.0 Win2000 Maedia Player WebLogic Linux
18 Netscape 7.0 Win XP Media Player s Win 2000
19 Mozilla 1.1 Win XP Media Player WebLogic Win NT




20
21
22
23
24
25
26
27
28

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Mozilla 1.1
Mozilla 1.1
Opera 7
Opera 7
Opera 7

IE 5.5

IE 5.5
Netscape 6.0
Netscape 7.0
Mozilla 1.1
Opera 7

IE 5.0

IE 5.0

IE 5.0

IE 5.5

IE 6.0

IE 6.0

IE 6.0
Netscape 6.0
Netscape 6.0
Netscape 6.1
Netscape 6.1
Netscape 6.1
Netscape 7.0
Netscape 7.0
Mozilla 1.1
Mozilla 1.1
Opera 7
Opera 7

Win 98
Win 95
Win XP
Win 98
Win ME
Win 2000
Win NT
Win 95
Win 95
Win ME
Win NT
Win NT
Win 2000
Win XP
Win XP
Win 2000
Win NT
Win XP
Win 98
Win XP
Win 95
Win 98
Win ME
Win 98
Win ME
Win NT
Win 2000
Win 95
Win 2000

Media Player
Real Player
None

Real Player
Media Player
Real Player
Media Player
~None

None

None

~Real Player
~None

~Real Player
~None

~Real Player
~None

~Real Player
~Media Player
~Media Player
~Real Player
~Media Player
~None

~Real Player
~None

~Real Player
~None

~Real Player
~Media Player
~None
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Apache

s
WebLogic
WeblLogic
Apache
~WebLogic
~IIS
WebLogic
~Apache
~IS

IS
~Apache
~IS
~WeblLogic
~Apache
~Apache
~WebLogic
~1IS
~WebLogic

~WebLogic
~WebLogic
~lIS
~Apache
~WebLogic
~lIS
~Apache

Pairwise Testing

Linux

Win 2000
Linux

Win 2000
Win NT
~Linux
~Win NT
~Win 2000
~Linux
~Win NT
~Linux
~Win 2000
~Win NT
~Linux
~Win 2000
~Win 2000
~Win NT
~Linux
~Win NT
~Linux
~Win 2000
~Win NT
~Linux
~Win 2000
~Win NT
~Linux
~Win 2000
~Win NT
~Win 2000

When a particular value in the test case doesn’t matter, because
all of its pairings have already been selected, it is marked with a
~. Bach’s algorithm chooses the value that has been paired the
fewest times relative to the others in the test case. Any other
value could be substituted for one prefixed with a ~ and all pairs
coverage would still be maintained. This might be done to test
more commonly used or more critical combinations more often.
In addition, Bach’s program displays information on how the
pairings were done. It lists each pair, shows how many times that

pair occurs in the table, and indicates each test case that contains
that pair.

Because of the “balanced” nature of orthogonal arrays, that
approach required sixty-four test cases. The “unbalanced™ nature
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of the all pairs selection algorithm requires only forty-eight test
cases, a savings of 25 percent.

Note that the combinations chosen by the Orthogonal Array
method may not be the same as those chosen by Allpairs. It does
not matter. What does matter 1s that all of the pair combinations

of parameters are chosen. Those are the combinations we want to
test.

Proponents of the Allpairs algorithm point out that given a
problem with 100 parameters, each capable of taking on one of
two values, 101 test cases would be required using a (balanced)
orthogonal array while the un-balanced all pairs approach
requires only ten tests. Since many applications have large
numbers of inputs that take on only a few values each, they
argue the all pairs approach 1s superior.

Final Comments

In some situations, constraints exist between certain choices of
some of the variables. For example, Microsoft’s IIS and Apple’s
MacOS are not compatible. It i1s certain that the pairwise
techniques will choose that combination for test. (Remember, it
does select all the pairs.) When creating pairwise subsets by
hand, honoring these various constraints can be difficult. Both
the rdExpert and AETG tools have this ability. You define the
constraints and the tool selects pairs meeting those constraints.

Given the two approaches to pairwise testing, orthogonal arrays
and the Allpairs algorithm, which 1s more effective? One expert,
who favors orthogonal arrays, believes that the coverage
provided by Allpairs is substantially inferior. He notes that the
uniform distribution of test points in the domain offers some
coverage against faults that are more complex than double-mode
faults. Another expert, who favors the Allpairs approach, notes

Tool

The AETG tool from
Telcordia
implements the all-
pairs testing
approach. See
http://aetgweb.
argreenhouse.com.
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that Allpairs does, in fact, test all the pairs, which is the goal. He
claims there 1s no evidence that the orthogonal array approach
detects more defects. He also notes that the Allpairs tool 1s
available free on the Web. What both experts acknowledge 1s
that no documented studies exist comparing the efficacy of one
approach over the other.

The exciting hope of pairwise testing is that by creating and
running between 1 percent to 20 percent of the tests you will find
between 70 percent and 85 percent of the total defects. There 1s
no promise here, only a hope. Many others have experienced this
significant result. Try this technique. Discover whether it works
for you.

Cohen reported that in addition to reducing the number of test
cases and increasing the defect find rate, test cases created by the
Allpairs algorithm also provided better code coverage. A set of
300 randomly selected tests achieved 67 percent statement
coverage and 58 percent decision coverage while the 200 all
pairs test cases achieved 92 percent block coverage and 85

percent decision coverage, a significant increase in coverage
with fewer test cases.

One final comment—it is possible that certain important
combinations may be missed by both pairwise approaches. The
80:20 rule tells us that combinations are not uniformly important.

Use your judgment to determine if certain additional tests should
be created for those combinations.

In the previous example we can be assured that the distribution
of browsers is not identical. It would be truly amazing if 12.5
percent of our users had IE 5.0, 12.5 percent had IE 5.5, 12.5
percent had IE 6.0, etc. Certain combinations occur more
frequently than others. In addition, some combinations exist that,
while used infrequently, absolutely positively must work
properly—"shut down the nuclear reactor” is a good example. In

89
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case pairwise misses an important combination, please add that
combination to your test cases.

Applicability and Limitations

Like other test design approaches previously presented, pairwise
testing can significantly reduce the number of test cases that
must be created and executed. It is equally applicable at the unait,
integration, system, and acceptance test levels. All it requires are
combinations of inputs, each taking on various values, that result
in a combinatorial explosion, too many combinations to test.

Remember, there is no underlying “software defect physics™ that

guarantees pairwise testing will be of benefit. There 1s only one
way to know—try 1t.

Summary

¢ When the number of combinations to test 1s very large,
do not to attempt to test all combinations for all the
values for all the variables, but test all pairs of variables.
This significantly reduces the number of tests that must
be created and run.

e Studies suggest that most defects are either single-mode
defects (the function under test simply does not work) or
double-mode defects (the pairing of this function/module
with that function/module fails). Pairwise testing defines
a minimal subset that guides us to test for all single-
mode and double-mode defects. The success of this
technique on many projects, both documented and
undocumented, 1s a great motivation for its use.
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e An orthogonal array 1s a two-dimensional array of
numbers that has this interesting property—choose any
two columns in the array, all the combinations will occur
in every column pair.

e There 1s no underlying “software defect physics” that
guarantees pairwise testing will be of benefit. There is
only one way to know—try it.

Practice

. Neither the Brown & Donaldson nor the Stateless
University Registration System case studies contain
huge numbers of combinations suitable for the pairwise
testing approach. As exercises, use the orthogonal array
and/or all pairs technique on the other two examples in
this chapter. Determine the set of pairwise test cases
using the chosen technique.

a. A bank has created a new data processing system
that is ready for testing. This bank has different
kinds of customers—consumers, very important
consumers, businesses, and non-profits; different
kinds of accounts—checking, savings, mortgages,
consumer loans, and commercial loans; they operate
in different states, each with different regulations—

California, Nevada, Utah, Idaho, Arizona, and New
Mexico.

b. In an object-oriented system, an object of class A
can send a message containing a parameter P to an
object of class X. Classes B, C, and D inherit from A
so they too can send the message. Classes Q, R, S,
and T inherit from P so they too can be passed as the
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parameter. Classes Y and Z inherit from X so they
too can receive the message.

References

Brownlie, Robert, et al. “Robust Testing of AT&T
PMX/StarMAIL Using OATS,” AT&T Technical Journal, Vol.
71, No. 3, May/June 1992, pp. 41-47.

Cohen, D.M., et al. “The AETG System: An Approach to
Testing Based on Combinatorial Design.” IEEE Transactions on
Software Engineering, Vol. 23, No. 7, July, 1997.

Kaner, Cem, James Bach, and Bret Pettichord (2002). Lessons

Learned in Software Testing: A Context-Driven Approach. John
Wiley & Sons.

Kuhn, D. Richard and Michael J. Reilly. “An Investigation of the
Applicability of Design of Experiments to Software Testing,”
27th NASAJ/IEEE Software Engineering Workshop, NASA
Goddard Space Flight Center, 4-6 December, 2002.
http://csrc.nist.gov/staff/kuhn/kuhn-reilly-02.pdf

Mandl, Robert. “Orthogonal Latin Squares: An Application of
Experiment Design to Compiler Testing,” Communications of
the ACM, Vol. 128, No. 10, October 1985, pp. 1054-1058.

Phadke, Madhav S. (1989). Quality Engineering Using Robust
Design. Prentice-Hall.

Wallace, Delores R. and D. Richard Kuhn. “Failure Modes In
Medical Device Software: An Analysis Of 15 Years Of Recall

Data,” International Journal of Reliability, Quality, and Safety
Engineering, Vol. 8, No. 4, 2001.



Chapter 7 -
State-Transition Testing

Colonel Cleatus Yorbville had been one seriously bored
astronaut for the first few months of his diplomatic mission on
the third planet of the Frangelicus X1V system, but all that had
changed on the day he'd discovered that his tiny, multipedal and
infinitely hospitable alien hosts were not only edible but tasted
remarkably like that stuff that's left on the pan after you've made
cinnamon buns and burned them a little.

— Mark Silcox
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Introduction

State-Transition diagrams, like decision tables, are another
excellent tool to capture certain types of system
requirements and to document internal system design. These
diagrams document the events that come into and are processed
by a system as well as the system’s responses. Unlike decision
tables, they specify very little in terms of processing rules. When
a system must remember something about what has happened
before or when valid and invalid orders of operations exist, state-
transition diagrams are excellent tools to record this information.

These diagrams are also vital tools in the tester’s personal

toolbox. Unfortunately, many analysts, designers, programmers,
and testers are not familiar with this technique.

Technique

State-Transition Diagrams

It is easier to introduce state-transition diagrams by example
rather than by formal definition. Since neither Brown &
Donaldson nor the Stateless University Registration System has
substantial state-transition based requirements let’s consider a
different example. To get to Stateless U, we need an airline
reservation. Let’s call our favorite carrier (Grace L. Ferguson
Airline & Storm Door Company) to make a reservation. We
provide some information including departure and destination
cities, dates, and times. A reservation agent, acting as our
interface to the airline’s reservation system, wuses that
information to make a reservation. At that point, the
Reservation is in the Made state. In addition, the system creates
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and starts a timer. Each reservation has certain rules about when
the reservation must be paid for. These rules are based on
destination, class of service, dates, etc. If this timer expires
before the reservation 1s paid for, the reservation is cancelled by

the system. In state-transition notation this information 1s
recorded as:

The circle represents one state of the Reservation—in this case
the Made state. The arrow shows the transition into the Made
state. The description on the arrow, givelnfo, is an event that
comes into the system from the outside world. The command
after the */’ denotes an action of the system; in this case

startPayTimer. The black dot indicates the starting point of the
diagram.

Sometime after the Reservation 1s made, but (hopefully) before
the PayTimer expires, the Reservation is paid for. This is
represented by the arrow labeled PayMoney. When the

Reservation 1s paid it transitions from the Made state to the
Paid state.

Figure 7-1

The Reservation is
Made.
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payMoney

Before we proceed let’s define the terms more formally:

State (represented by a circle)—A state 1s a condition in
which a system 1s waiting for one or more events. States
“remember”’ inputs the system has received in the past
and define how the system should respond to subsequent
events when they occur. These events may cause state-
transitions and/or initiate actions. The state i1s generally
represented by the values of one or more variables
within a system.

Transition (represented by an arrow)—A transition
represents a change from one state to another caused by
an event.

Event (represented by a label on a transition)—An event
1s something that causes the system to change state.
Generally, 1t 1s an event in the outside world that enters
the system through its interface. Sometimes it 1s
generated within the system such as Timer expires or
Quantity on Hand goes below Reorder Point. Events
are considered to be instantaneous. Events can be
independent or causally related (event B cannot take
place before event A). When an event occurs, the system
can change state or remain in the same state and/or

Figure 7-2

The Reservation
transitions to the
Paid state.




Chapter 7 - State-Transition Testing

execute an action. Events may have parameters
associated with them. For example, Pay Money may
indicate Cash, Check, Debit Card, or Credit Card.

e Action (represented by a command following a *“/’)—An
action 1s an operation initiated because of a state change.
It could be print a Ticket, display a Screen, turn on a
Motor, etc. Often these actions cause something to be
created that are outputs of the system. Note that actions
occur on transitions between states. The states
themselves are passive.

e The entry point on the diagram 1s shown by a black dot
while the exit point is shown by a bulls-eye symbol.

This notation was created by Mealy. An alternate notation has
been defined by Moore but is less frequently used. For a much
more in-depth discussion of state-transition diagrams see Fowler
and Scott’s book, UML Distilled: A Brief Guide To The Standard
Object Modeling Language. It discusses more complex issues
such as partitioned and nested state-transition diagrams.

Note that the state-transition diagram represents one specific
entity (in this case a Reservation). It describes the states of a
reservation, the events that affect the reservation, the transitions
of the reservation from one state to another, and actions that are
initiated by the reservation. A common mistake 1s to mix
different entities into one state-transition diagram. An example
might be mixing Reservation and Passenger with events and
actions corresponding to each.

From the Paid state the Reservation transitions to the Ticketed
state when the print command (an event) is issued. Note that in

addition to entering the Ticketed state, a Ticket is output by the
system.
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payMoney

Figure 7-3

The Reservation
transitions to the
Ticketed state.

From the Ticketed state we giveTicket to the gate agent to board
the plane.

payMoney

Figure 7-4

The Reservation
transitions to the
Used state.
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After some other action or period of time, not indicated on this
diagram, the state-transition path ends at the bulls-eye symbol.

payMoney

Pr
f?mcker

Figure 7-5

._/ﬁ The path ends.
ol

Does this diagram show all the possible states, events, and
transitions in the life of a Reservation? No. If the Reservation

1s not paid for in the time allotted (the PayTimer expires), it is
cancelled for non-payment.
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payMoney
Made Paid SEENENENENENENEEN
Figure 7-6
The PayTimer
o expires and the
AtO' et © Reservation is
9"::1‘@3‘!{‘ < cancelled for non-
S 5‘ payment.
™
<)
g

e hﬂ‘#&f

Cancelled

NonPay

Finished vyet? No. Customers sometimes cancel their
reservations. From the Made state the customer (through the
reservation agent) asks to cancel the Reservation. A new state,
Cancelled By Customer, is required.
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payMoney
p’fq AEEEEEEESENEEEEEN
Made hey Figure 7-7
Cancel the
Reservation from
.-_/ the Made state.
. \t\“" mﬂt n e
gﬂ‘ﬁ? ﬂ‘ﬂ % %
3 T
-
>
s &
o
Cancelled &
S

ByCust

Cancelled

NonPay

In addition, a Reservation can be cancelled from the Paid state.
In this case a Refund should be generated and leave the system.
The resulting state again is Cancelled By Customer.
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payMoney

Figure 7-8
._/ Ticketed Cancellation from
W.\t\""‘l’ﬂm&‘ the Paid state.
-\
ﬁi “69

sandx3sewi ey

Ny
&
&
Cancelled R g
5

ByCust

Cancelled

NonPay

One final addition. From the Ticketed state the customer can
cancel the Reservation. In that case a Refund should be
generated and the next state should be Cancelled by Customer.
But this 1s not sufficient. The airline will generate a refund but
only when it receives the printed Ticket from the customer. This
introduces one new notational element—square brackets [] that
contain a conditional that can be evaluated either True or False.

This conditional acts as a guard allowing the transition only if
the condition is true.
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payMoney

Ticketed

Ve
punyey/|asues

salidx3Jowi ) Aey

Cancelled
ByCust

Cancelled

NonPay

Note that the diagram is still incomplete. No arrows and bulls-
eyes emerge from the Cancelled states. Perhaps we could
reinstate a reservation from the Cancelled NonPay state. We
could continue expanding the diagram to include seat selection,
flight cancellation, and other significant events affecting the
reservation but this 1s sufficient to illustrate the technique.

As described, state-transition diagrams express complex system
rules and interactions in a very compact notation. Hopefully,
when this complexity exists, analysts and designers will have
created state-transition diagrams to document system
requirements and to guide their design.

Figure 7-9

Cancellation from
the Ticketed state.
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State-Transition Tables

A state-transition diagram i1s not the only way to document
system behavior. The diagrams may be easier to comprehend,
but state-transition tables may be easier to use in a complete and

tables consist of four
columns—Current State, Event, Action, and Next State.

systematic manner.

State-transition

Current : Next
State Event Action State

null givelnfo startPayTimer Made
null payMoney -- null
null print -- null
null giveTicket - null
null cancel — null
null PayTimerExpires - null
Made givelnfo - Made
Made payMoney - Paid
Made print -- Made
Made giveTicket - Made
Made cancel - Can-Cust
Made PayTimerExpires - Can-NonPay
Paid giveinfo - Paid
Paid payMoney - Paid
Paid print Ticket Ticketed
Paid giveTicket - Paid
Paid cancel Refund Can-Cust
Paid PayTimerExpires - Paid
Ticketed givelnfo — Ticketed
Ticketed payMoney - Ticketed
Ticketed print -- Ticketed
Ticketed giveTicket - Used
Ticketed cancel Refund Can-Cust
Ticketed PayTimerExpires - Ticketed
Used givelinfo - Used
Used payMoney - Used
Used print -- Used
Used giveTicket - Used
Used cancel -- Used
Used PayTimerExpires - Used
Can-NonPay giveinfo - Can-NonPay

Table 7-1

State-Transition
table for
Reservation.
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Can-NonPay payMoney Can-NonPay
Can-NonPay print Can-NonPay
Can-NonPay giveTicket Can-NonPay
Can-NonPay cancel - Can-NonPay
Can-NonPay PayTimerExpires - Can-NonPay
Can-Cust givelnfo - Can-Cust
Can-Cust payMoney - Can-Cust
Can-Cust print -- Can-Cust
Can-Cust giveTicket Can-Cust
Can-Cust cancel Can-Cust
Can-Cust PayTimerExpires - Can-Cust

The advantage of a state-transition table is that it lists all possible
state-transition combinations, not just the valid ones. When
testing critical, high-risk systems such as avionics or medical
devices, testing every state-transition pair may be required,
including those that are not valid. In addition, creating a state-
transition table often unearths combinations that were not
identified, documented, or dealt with in the requirements. It 1s
highly beneficial to discover these defects before coding begins.

Using a state-transition table can help detect defects 1n
implementation that enable invalid paths from one state to
another. The disadvantage of such tables is that they become
very large very quickly as the number of states and events
increases. In addition, the tables are generally sparse; that 1s,
most of the cells are empty.

Creating Test Cases

Information 1n the state-transition diagrams can easily be used to

create test cases. Four different levels of coverage can be
defined:

1. Create a set of test cases such that all states are “visited”
at least once under test. The set of three test cases shown
below meets this requirement. Generally this is a weak
level of test coverage.

Key Point

The advantage of a
state-transition
table is that it lists
all possible state-
transition
combinations, not
just the valid ones.
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Figure 7-10
A set of test cases
that “visit” each
state.
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2. Create a set of test cases such that all events are

triggered at least once under test. Note that the test cases
that cover each event can be the same as those that cover

each state. Again, this is a weak level of coverage.
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payhjgnay

ated

3. Create a set of test cases such that all paths are executed
at least once under test. While this level is the most
preferred because of its level of coverage, it may not be
feasible. If the state-transition diagram has loops, then
the number of possible paths may be infinite. For
example, given a system with two states, A and B, where

A transitions to B and B transitions to A. A few of the
possible paths are:

A—B

A—B—A

A—B—A—B—A—B
A—-B—A—-B—A—B—A
A—B—-A—-B—A—-B—A—B—A—B

Figure 7-11

A set of test cases
that trigger all
events at least
once.
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and so on forever. Testing of loops such as this can be
important 1f they may result 1n accumulating
computational errors or resource loss (locks without
corresponding releases, memory leaks, etc.).

Create a set of test cases such that all transitions are
exercised at least once under test. This level of testing
provides a good level of coverage without generating
large numbers of tests. This level 1s generally the one
recommended.

saJidx3iewi | Aed

Key Point

Testing every
transition is usually
the recommended
level of coverage
for a state-transition
diagram.

Figure 7-12

A set of test cases
that trigger all
transitions at least
once.
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Test cases can also be read directly from the state-transition
table. The gray rows in the following table show all the valid

transitions.
Current . Next
\ State Event Action State
{ null | givelnfo startPayTimer | Made
{ null payMoney - null
| null print null
null | giveTicket null
null cancel null
null PayTimerExpires null
I Made ivelnfo Made
Made ey | .
Made - Made
| Made iveTicket -- Made
I_Made _ _r - Can-Cust |
Made PayTimerExpires —l - Can-NonPay
Paid ivelnfo - Paid
Paid payMoney | -- Paid
|_Paid rint Ticket Ticketed
| Paid iveTicket - Paid
Paid cancel | Refund Can-Cust
[ Paid PayTimerExpires - Paid
| Ticketed givelnfo . Ticketed
Ticketed payMoney Ticketed
Ticketed rint Ticketed
iveTicket - Used
Ticketed cancel Refund Can-Cust |
ILTickated PayTimerExpires - J Ticketed %
| Used ivelnfo - Used
| Used yMoney - | Used
| Used rint - | Used
Used iveTicket Used
| Used cancel - Used
| Used PayTimerExpires - Used
| Can-NonPay | givelnfo -- | Can-NonPay |
Can-NonPay | payMoney - Can-NonPay
Can-NonPay print - | Can-NonPay
Can-NonPay | giveTicket - | Can-NonPay
Can-NonPay cancel |_Can-NonPay
Can-NonPay PayTimerExpires Can-NonPay

J
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Table 7-2

Testing all valid
transitions from a
State-transition
table.




110 A Practitioner’s Guide to Software Test Design

Can-Cust givelnfo - Can-Cust
Can-Cust | payMoney - Can-Cust
Can-Cust print -- Can-Cust
Can-Cust giveTicket - Can-Cust
Can-Cust cancel - Can-Cust
Can-Cust PayTimerExpires - Can-Cust

In addition, depending on the system risk, you may want to
create test cases for some or all of the invalid state/event pairs to
make sure the system has not implemented invalid paths.

Applicability and Limitations

State-Transition diagrams are excellent tools to capture certain
system requirements, namely those that describe states and their
associated transitions. These diagrams then can be used to direct
our testing efforts by identifying the states, events, and
transitions that should be tested.

State-Transition diagrams are not applicable when the system
has no state or does not need to respond to real-time events from
outside of the system. An example i1s a payroll program that
reads an employee’'s time record, computes pay, subtracts

deductions, saves the record, prints a paycheck, and repeats the
process.

Summary

e State-Transition diagrams direct our testing efforts by
identifying the states, events, actions, and transitions that
should be tested. Together, these define how a system
interacts with the outside world, the events it processes,
and the valid and invalid order of these events.
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e A state-transition diagram is not the only way to
document system behavior. They may be easier to
comprehend, but state-transition tables may be easier to
use 1n a complete and systematic manner.

e The generally recommended level of testing using state-
transition diagrams 1s to create a set of test cases such
that all transitions are exercised at least once under test.
In high-risk systems, you may want to create even more
test cases, approaching all paths if possible.

Practice

I. This exercise refers to the Stateless University
Registration System Web site described in Appendix B.
Below is a state-transition diagram for the “enroll in a
course” and “drop a course” process. Determine a set of

test cases that you feel adequately cover the enroll and
drop process.

The following terms are used in the diagram:

Events
create — Create a new course.

enroll — Add a student to the course.
drop — Drop a student from the course.

Attributes
ID — The student 1dentification number.
max — The maximum number of students a course
can hold.
#enrolled — The number of students currently
enrolled 1n the course.
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#waiting — The number of students currently on the
Wait List for this course.

Tests
isEnrolled — Answers “is the student enrolled (on
the Section List)?”

onWaitList — Answers “is the student on the
WaitList?”

Lists
SectionList — A list of students enrolled in the
class.
WaitList — A list of students waiting to be enrolled
in a full class.

Symbols
++ Increment by 1.
-- Decrement by 1.
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create(courselD, description, sectionlD, days, times)

clirup(lD} enroli(ID)
[isEnrolled] [#enrolled<max-1]
/ removeFromSectionList; / addToSectionList;
#enrolled-- #enrolled++

Accepting

Enrollmen >

enroli(ID)
drop(ID) _
: . [#enrolled=max-1]
(IsEnrolied && no WaitList] / addToSectionList:
/ removeFromSectionList; senrolled++
#enrolled--
drop(ID)
drop(ID) lisEnrolled && #waiting==1]
[isEnrolled && #waiting>1] / remove student from
/ remove student from SectionList; move
SectionList; move first first student from WaitL ist
student from WaitList to to SectionList; #waiting=0,

SectionList; #waiting-- @ delete WaitList

drop(ID) enroll(ID)

[on WaitList && / createWaitList:

#waiting==1] addToWaitList;

/ removeFromWaitList: #waiting=1

. g_

#waiting=0;

delete WaitList
drop(ID) enroli(ID) N
[onWaitList && #waiting>1] / addToWaitList;
/ removeFromWaitL ist: #waiting++

#waiting--

Figure 7-13

State-transition
diagram for enroll
and drop a course
at Stateless U.
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Standing in the concessions car of the Orient Express as it hissed
and lurched away from the station, Special Agent Chu could feel
enemy eyes watching him from the inky shadows and knew that
he was being tested, for although he had never tasted a plug of
tobacco in his life, he was impersonating an arms dealer known
to be a connoisseur, so he knew that he, the Chosen One, Chow
Chu, had no choice but to choose the choicest chew on the choo-
choo.

— Loren Haarsma
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Introduction

In the chapters on Equivalence Class and Boundary Value
testing, we considered the testing of individual variables that
took on values within specified ranges. In this chapter we will
consider the testing of multiple variables simultaneously. There
are two reasons to consider this:

e We rarely will have time to create test cases for every
variable in our systems. There are simply too many.

¢ Often variables interact. The value of one variable
constrains the acceptable values of another. In this case,
certain defects cannot be discovered by testing them
individually.

Domain analysis i1s a technique that can be used to identify
efficient and effective test cases when multiple variables can or
should be tested together. It builds on and generalizes
equivalence class and boundary value testing to n simultaneous
dimensions. Like those techniques, we are searching for
situations where the boundary has been defined or implemented
incorrectly.

In two dimensions (with two interacting parameters) the
following defects can occur:

¢ A shifted boundary in which the boundary is displaced
vertically or horizontally

e A tilted boundary in which the boundary is rotated at an
incorrect angle

e A missing boundary

e An extra boundary

Key Point

Domain analysis is a
technique that can
be used to identify
efficient and effective
test cases when
multiple variables
should be tested
together.
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Figure 8-1 is adapted from Binder. It illustrates these four types
of defects graphically.

Correct Incorrect
Implementation Implementation

Shifted v<4 Figure 8-1
_
Boundary _+__y_§____ Two dimensional
boundary defects.

y<=x-10 v<=x+10

Tilted \
Boundary /

y<=x-10
y<=x+10

y<=x-10
Missing /\ \
Boundary

y<=x+10 y<=x10

y<=Xx+10
Extra /
Boundary

)
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Certainly there can be interactions between three or more
variables, but the diagrams are more difficult to visualize.

Technique

The domain analysis process guides us in choosing efficient and
effective test cases. First, a number of definitions:

An on point is a value that lies on a boundary.
An off point is a value that does not lie on a boundary.

An In point 1s a value that satisfies all the boundary
conditions but does not lie on a boundary.

An out point 1s a value that does not satisfy any
boundary condition.

Choosing on and off points is more complicated that it may

appear.

When the boundary is closed (defined by an operator
containing an equality, 1.e., <, 2, or =) so that points on
the boundary are included in the domain, then an on
point lies on the boundary and 1s included within the
domain. An off point lies outside the domain.

When the boundary is open (defined by an inequality
operator < or >) so that points on the boundary are not
included 1n the domain, then an on point lies on the
boundary but is not included within the domain. An off
point lies inside the domain.

Confused? At this point examples are certainly in order.
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®n

eln
On On
Offe ® Off
¢ Qut ® Qut
X>10 X>10

On the left 1s an example of a closed boundary. The region
defined consists of all the points greater than or equal to 10. The
on point has the value 10. The off point is slightly off the
boundary and outside the domain. The in point is within the
domain. The out point is outside the domain.

On the right 1s an example of an open boundary. The region
defined consists of all the points greater than (but not equal to)
10. Again, the on point has a value of 10. The off point is

slightly off the boundary and inside the domain. The in point is
within the domain. The out point is outside the domain.

Having defined these points, the 1x1 (“one-by-one’”) domain
analysis technique instructs us to choose these test cases:

e For each relational condition (2, >, <, or <) choose one
on point and one off point.

e For each strict equality condition (=) choose one on
point and two off points, one slightly less than the
conditional value and one slightly greater than the value.

Note that there is no reason to repeat identical tests for adjacent

domains. If an off point for one domain is the in point for
another, do not duplicate these tests.

Figure 8-2

Examples of on, off,
in, and out points for
both closed and

open boundaries.
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Binder suggests a very useful table for documenting 1x1 domain
analysis test cases called the Domain Test Matrix.

Variable/ Test Cases
Condition Type 11]2]3]141516]7[(8]9]10] 11 |12 |13 |14 ] 15] 16
X1 | C11 On o [ P _
off | P e B !
C12 On _ _
Off
On
Off |
Cim On |
Off -
Typical | In | |
X2 | C21 On |
Off | l ’
C22 [ On I_] |
off || . l I [Vt |

C2m On | I
e

Off |

i b

On L4 __II l:
— |

Typical | In

Expected Result

Note that test cases | through 8 test the on points and off points
for each condition of the first variable (X1) while holding the
value of the second variable (X2) at a typical in point. Test cases
9 through 16 hold the first variable at a typical in point while
testing the on and off points for each condition of the second
variable. Additional variables and conditions would follow the
same pattern.

Table 8-1

Example Domain
Test Matrix.
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Example

Admission to Stateless University 1s made by considering a
combination of high school grades and ACT test scores. The
shaded cells in the following table indicate the combinations that
would guarantee acceptance. Grade Point Averages (GPAs) are
shown across the top while ACT scores are shown down the left
side. Stateless University is a fairly exclusive school in terms of
its admission policy.

| 36

35

. S B = —

34

———___om o —

33

S A A

32

31
| 0-30

ACT Score

This table can be represented as the solution set of these three
linear equations:

ACT = 36 (the highest score possible)
GPA < 4.0 (the highest value possible)
10*GPA + ACT 271

(The third equation can be found by using the good old y=mx+b
formula from elementary algebra. Use points {ACT=36,
GPA=3.5} and {ACT=31, GPA=4.0} and crank—that’s math
slang for solve the pair of simultaneous equations obtained by
substituting each of these two points into the y=mx+b equation.)

Explanation

The ACT
Assessment is an
examination
designed to assess
high school students’
general educational
development and
their ability to
complete college-
level work.

The Grade Point
Average is based on
converting letter

grades to numeric
values

A = 4.0 (Best)
B=3.0

C =2.0 (Average)
D=1.0

Table 8-2

Stateless University
Admissions Matrix.
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ACT = 36
36
0 SENESEEEEEEEEEEER
A A ) > Figure 8-3
C C - Stateless University
T 32 ; - Admissions Matrix in
graphical form.
30
3.0 3.2 3.4 3.6 3.8 4.0
GPA
The following test cases cover these three boundaries using the
1x1 domain analysis process.
= ltagel. 2.%1 .8 g -8 6
GPA GPA < On| 4.0
4.0 | Off 4.1
Typical | In 3.7 3.8 3.8 3.9
ACT ACT < On 36
36 Off 37
ety 1 ] Typical In 34 33 32 35
GPA/ACT | 10*GPA | On J
+ ACT 2 | Off
¢ 3. 4y : |
Typical In | 3.9/35 | 3.8/34 | 3.6/36 | 3.8/34 | 3.7/34 | 3.8/32
Expected Result Admit | Reject | Admit I_:leject Admit F{Eiefzt"

Table 8-3
Test cases 1 and 2 verify the GPA < 4.0 constraint. Case | e

checks on the GPA = 4.0 boundary while case 2 checks just X} Doman Analysis
outside the boundary with GPA = 4.1. Both of these cases use Stateless University

typical values for the ACT and GPA/ACT constraints. admissions.

Test cases 3 and 4 verify the ACT < 36 constraint. Case 3 checks
on the ACT = 36 boundary while case 4 checks just outside the
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boundary with ACT = 37. Both of these cases use typical values
for the GPA and GPA/ACT constraints.

Test cases 5 and 6 verify the 10*GPA + ACT 2 71 constraint.
Case 5 checks on the GPA = 3.7 and ACT = 34 boundary while
case 6 checks just outside the boundary with GPA=3.8 and ACT

= 32. Both of these cases use typical values for the GPA and
ACT constraints.

Applicability and Limitations

Domain analysis is applicable when multiple variables (such as
input fields) should be tested together either for efficiency or
because of a logical interaction. While this technique 1s best
suited to numeric values, it can be generalized to Booleans,
strings, enumerations, etc.

Summary

e Domain analysis facilitates the testing of multiple
variables simultaneously. It 1s useful because we rarely
will have time to create test cases for every variable in
our systems. There are simply too many. In addition,
often variables interact. When the value of one variable
constrains the acceptable values of another, certain

defects cannot be discovered by testing them
individually.

e [t builds on and generalizes equivalence class and
boundary value testing to n simultaneous dimensions.
Like those techniques, we are searching for situations
where the boundary has been implemented incorrectly.

123



124 A Practitioner’s Guide to Software Test Design

¢ In using the 1x1 domain analysis technique for each
relational condition (2, >, <, or <) we choose one on
point and one off point. For each strict equality condition
(=) we choose one on point and two off points, one

slightly less than the conditional value and one slightly
greater than the value.

Practice

I. Stateless University prides itself in preparing not just
educated students but good citizens of their nation.
(That’s what their advertising brochure says.) In addition
to their major and munor coursework, Stateless U.
requires each student to take (and pass) a number of
General Education classes. These are:

e C(College Algebra (the student may either take the
course or show competency through testing).

¢ Our Nation’s Institutions—a survey course of our
nation’s history, government, and place in the world.

e From four to sixteen hours of Social Science courses
(numbers 100-299).

¢ From four to sixteen hours of Physical Science
courses (numbers 100-299)

¢ No more than twenty-four combined hours of Social

Science and Physical Science courses may be
counted toward graduation.
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Apply 1x1 domain analysis to these requirements, derive
the test cases, and use Binder's Domain Test Matrix to
document them.

References
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The Insect Keeper General, sitting astride his giant hovering
aphid, surveyed the battlefield which reeked with the stench of
decay and resonated with the low drone of the tattered and dying
mutant swarms as their legs kicked forlornly at the sky before
turning to his master and saying, ‘My Lord, your flies are
undone.’

— Andrew Vincent
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Introduction

p until now we have examined test case design techniques

for parts of a system—input variables with their ranges and
boundaries, business rules as represented in decision tables, and
system behaviors as represented in state-transition diagrams.
Now 1t 1s time to consider test cases that exercise a system’s
functionalities from start to finish by testing each of its
individual transactions.

Defining the transactions that a system processes is a vital part of
the requirements definition process. Various approaches to
documenting these transactions have been used in the past.
Examples include flowcharts, HIPO diagrams, and text. Today,
the most popular approach is the use case diagram. Like decision
tables and state-transition diagrams, use cases are usually created
by developers for developers. But, like these other techniques,
use cases hold a wealth of information useful to testers.

Use cases were created by Ivar Jacobsen and popularized in his
book Object-Oriented Software Engineering: A Use Case Driven
Approach. Jacobsen defines a “use case” as a scenario that
describes the use of a system by an actor to accomplish a specific
goal. By “actor” we mean a user, playing a role with respect to
the system, seeking to use the system to accomplish something
worthwhile within a particular context. Actors are generally
people although other systems may also be actors. A *“scenario”
1s a sequence of steps that describe the interactions between the
actor and the system. Note that the use case is defined from the
perspective of the user, not the system. Note also that the internal
workings of the system, while vital, are not part of the use case
definition. The set of use cases makes up the functional
requirements of a system.
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The Unified Modeling Language notion for use cases is:

Create
% /
Administrator /
% ‘-H

Student .

The stick figures represent the actors, the ellipses represent the
use cases, and the arrows show which actors initiate which use
cases.

It 1s important to note that while use cases were created in the
context of object-oriented systems development, they are equally

useful in defining functional requirements in other development
paradigms as well.

The value of use cases is that they:
e Capture the system’s functional requirements from the
user’s perspective; not from a technical perspective, and

irrespective of the development paradigm to be used.

e Can be used to actively involve users in the requirements
gathering and definition process.

e Provide the basis for identifying a system’s key internal
components, structures, databases, and relationships.

e Serve as the foundation for developing test cases at the
system and acceptance level.

Figure 9-1

Some Stateless
University use
cases.
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Technique

Unfortunately, the level of detail specified in the use cases is not
sufficient, either for developers or testers. In his book Writing
Effective Use Cases, Alistair Cockburn has proposed a detailed
template for describing use cases. The following i1s adapted from

his work:

Use Case Component

Description

Use Case Number
or ldentifier

A unique identifier for this use
case

Use Case Name

The name should be the goal
stated as a short active verb
phrase

Goal in Context

A more detailed statement of the
goal if necessary

Scope

Corporate | System | Subsystem

Level

Summary | Primary task |
Subfunction

Primary Actor

Role name or description of the
primary actor

Preconditions

The required state of the system
before the use case is triggered

Success End Conditions

The state of the system upon
successful completion of this use
case

Failed End Conditions

The state of the system if the use
case cannot execute to
completion

Trigger

The action that initiates the
execution of the use case

Main Success Scenario

Step Action

3

2

Table 9-1

Use case template.
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Conditions under which the main

Extensions success scenario will vary and a
description of those variations
Variations that do not affect the

Sub-Variations main flow but that must be
considered

Priority Criticality

Response Time

Time available to execute this
use case

Frequency

How often this use case 1s
executed

Channels to Primary
Actor

Interactive | File | Database | ...

Secondary Actors

Other actors needed to
accomplish this use case

Channels to Secondary
Actors

Interactive | File | Database | ...

Date Due

Schedule information

Completeness Level

Use Case identified (0.1)| Main
scenario defined (0.5) | All
extensions defined (0.8) | All
fields complete (1.0)

Open Issues

Unresolved issues awaiting
decisions

Example

Consider the following example from the Stateless University
Registration System. A student wants to register for a course

using SU’s online registration system, SURS.

131
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Use Case Component

Description

Use Case Number
or Identifier

SURS1138

Use Case Name

Register for a course (a class
taught by a faculty member)

Goal in Context

Scope System
Level Primary task
Primary Actor Student
Preconditions None

Success End Conditions

The student 1s registered for the
course—the course has been
added to the student’s course list

Failed End Conditions

The student’s course list 1s
unchanged

Trigger

Student selects a course and
“Registers"

Main Success Scenario

A: Actor
S: System

Step Action
A: Selects
I | “Register for a
course”
5 A: Selects course

(e.g. Math 1060)

S: Displays course

3 "
description
A: Selects section

4 | (Mon & Wed
9:00am)

5 S: Displays section
days and times

6 | A: Accepts
S: Adds

7 | course/section to
student's course list

Table 9-2

Example use case.
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Extensions

Course does not
exist

S: Display message
and exit

2a

Section does not
exist

S: Display message
and exit

4a

Section 1s full
4b | S: Display message
and exit

Student does not
accept

S: Display message
and exit

6a

Sub-Variations

Student may use
- Web
- Phone

Priority

Critical

Response Time

10 seconds or less

Frequency

Approximately S courses x
10,000 students over a 4-week
period

Channels to Primary

Actor Interactive
Secondary Actors None
Channels to Seconda

Actors i N/A

Date Due | Feb
Completeness Level 0.5

Open Issues None
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Hopefully each use case has been through an inspection process
before it was implemented. To test the implementation, the basic
rule 1s to create at least one test case for the main success
scenario and at least one test case for each extension.

Because use cases do not specify input data, the tester must
select it. Typically we use the equivalence class and boundary
value techniques described earlier. Also a Domain Test Matrix
(see the Domain Analysis Testing chapter for an example) may
be a useful way of documenting the test cases.

It 1s important to consider the risk of the transaction and its
variants under test. Less risky transactions merit less testing.
More risky transactions should receive more testing. For them
consider the following approach.

To create test cases, start with normal data for the most often
used transactions. Then move to boundary values and invalid
data. Next, choose transactions that, while not used often, are
vital to the success of the system (i.e., Shut Down The Nuclear
Reactor). Make sure you have at least one test case for every
Extension in the use case. Try transactions in strange orders.
Violate the preconditions (1f that can happen 1n actual use). If a
transaction has loops, don’t just loop through once or twice—be
diabolical. Look for the longest, most convoluted path through
the transaction and try it. If transactions should be executed in
some logical order, try a different order. Instead of entering data
top-down, try bottom-up. Create “goofy” test cases. If you don’t
try strange things, you know the users will.

Most paths through a transaction are easy to create. They
correspond to valid and invalid data being entered. More difficult
are those paths due to some kind of exceptional condition—low
memory, disk full, connection lost, driver not loaded, etc. It can
be very time consuming for the tester to create or simulate these
conditions. Fortunately, a tool is available to help the tester

Key Point

Always remember
to evaluate the risk
of each use case
and extension and
create test cases
accordingly.

Free Stuff

Download Holodeck
from
http://www.sisecure.
com/holodeck/
holodeck-trial.aspx.
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simulate these problems—Holodeck, created by James Whittaker
and his associates at Florida Institute of Technology. Holodeck
monitors the interactions between an application and its
operating system. It logs each system call and enables the tester
to simulate a failure of any call at will. In this way, the disk can
be “made full,” network connections can “become
disconnected,” data transmission can “be garbled,” and a host of
other problems can be simulated.

A major component of transaction testing is test data. Boris
Beizer suggests that 30 percent to 40 percent of the effort in
transaction testing 1s generating, capturing, or extracting test
data. Don’t forget to include resources (time and people) for this
work 1n your project’s budget.

Applicability and Limitations

Transaction testing is generally the cornerstone of system and
acceptance testing. It should be used whenever system
transactions are well defined. If system transactions are not well
defined, you might consider polishing up your resume or C.V.

While creating at least one test case for the main success
scenario and at least one for each extension provides some level
of test coverage, it is clear that, no matter how much we try,

most 1nput combinations will remain untested. Do not be
overconfident about the quality of the system at this point.

Summary

e A use case i1s a scenario that describes the use of a
system by an actor to accomplish a specific goal. An

Note

One testing group
designates a “data
czar' whose sole
responsibility is to
provide test data.
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“actor” 1s a user, playing a role with respect to the
system, seeking to use the system to accomplish
something worthwhile within a particular context. A
scenario 1S a sequence of steps that describe the
interactions between the actor and the system.

A major component of transaction testing 1s test data.
Boris Beizer suggests that 30 percent to 40 percent of the
effort in transaction testing is generating, capturing, or
extracting test data. Don’t forget to include resources
(time and people) for this work in your project’s budget.

While creating at least one test case for the main success
scenario and at least one for each extension provides
some level of test coverage, it is clear that, no matter

how much we try, most input combinations will remain
untested. Do not be overconfident about the quality of
the system at this point.

Practice

Given the “Register For A Course” use case for the
Stateless University Registration System described
previously, create a set of test cases so that the main
success scenario and each of the extensions are tested at
least once. Choose “Interesting” test data using the
equivalence class and boundary value techniques.
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Definition

hite box testing is a strategy in which testing is based on
the internal paths, structure, and implementation of the
software under test (SUT). Unlike its complement, black box
testing, white box testing generally requires detailed
programming skills.

The general white box testing process 1s:

e The SUT s implementation 1s analyzed.

e Paths through the SUT are identified.

e Inputs are chosen to cause the SUT to execute selected
paths. This 1s called path sensitization. Expected results
for those inputs are determined.

¢ The tests are run.

e Actual outputs are compared with the expected outputs.

e A determination is made as to the proper functioning of
the SUT.

Applicability

White box testing can be applied at all levels of system
development—unit, integration, and system. Generally white
box testing 1s equated with unit testing performed by developers.
While this is correct, it 1s a narrow view of white box testing.

White box testing 1s more than code testing—it 1s path testing.
Generally, the paths that are tested are within a module (unit
testing). But we can apply the same techniques to test paths
between modules within subsystems, between subsystems within
systems, and even between entire systems.
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Disadvantages

White box testing has four distinct disadvantages. First, the
number of execution paths may be so large than they cannot all
be tested. Attempting to test all execution paths through white
box testing is generally as infeasible as testing all input data
combinations through black box testing.

Second, the test cases chosen may not detect data sensitivity
errors. For example:

p=q/r,
may execute correctly except when r=0.
y=2"x // should read y=x

will pass for test cases x=0, y=0 and x=2, y=4

Third, white box testing assumes the control flow is correct (or
very close to correct). Since the tests are based on the existing
paths, nonexistent paths cannot be discovered through white box
testing.

Fourth, the tester must have the programming skills to
understand and evaluate the software under test. Unfortunately,
many testers today do not have this background.
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Advantages

When using white box testing, the tester can be sure that every

path through the software under test has been identified and
tested.
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It was from the primeval wellspring of an antediluvian passion
that my story arises which, like the round earth flattened on a
map, is but a linear projection of an otherwise periphrastic and
polyphiloprogenitive, non-planar, non-didactic, self-inverting

construction whose obscurantist geotropic liminality is beyond
reasonable doubt.

— Milinda Banerjee
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if (a>0) dolsGreater();
if (a==0) dolsEqual();
/| missing statement — if (a<0) dolsLess();

e Defects may exist in processing statements within the
module even through the control flow itself 1s correct.

// actual (but incorrect) code
a=a+1;

// correct code

a=a-1;

¢ The module may execute correctly for almost all data
values but fail for a few.

int blech (int a, int b) {
return a/b;

}

fails if b has the value O but executes correctly if b is
not 0.

Even though control flow testing has a number of drawbacks, it
1s still a vital tool 1n the tester’s toolbox.

Technique

Control Flow Graphs

Control flow graphs are the foundation of control flow testing.
These graphs document the module’s control structure. Modules
of code are converted to graphs, the paths through the graphs are
analyzed, and test cases are created from that analysis. Control
flow graphs consist of a number of elements:

Key Point

Control flow graphs
are the foundation
of control flow
testing.
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(=
b=2;
c=3;
else {(x=x/2;} 0

p=q/r;
if (b/c>3) {z=x+V;}

Levels of Coverage

In control flow testing, different levels of test coverage are
defined. By “coverage” we mean the percentage of the code that
has been tested vs. that which is there to test. In control flow
testing we define coverage at a number of different levels. (Note
that these coverage levels are not presented in order. This 1s
because, in some cases, it is easier to define a higher coverage

level and then define a lower coverage level in terms of the
higher.)

Level 1
The lowest coverage level is “100% statement coverage”
(sometimes the “100%” 1s dropped and 1s referred to as
“statement coverage™). This means that every statement
within the module 1s executed, under test, at least once.
While this may seem like a reasonable goal, many

SEEEENEENESEEEEEE
Figure 10-1

Flow graph
equivalent of
program code.
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defects may be missed with this level of coverage.
Consider the following code snippet:

if (a>0) {x=x+1;}
if (b==3) {y=0;)

This code can be represented in graphical form as:

A

Q"@

These two lines of code implement four different paths
of execution:

While a single test case is sufficient to test every line of
code 1n this module (for example, use a=6 and b=3 as
input), it 1s apparent that this level of coverage will miss

Figure 10-2

Graphical
representation of
the two-line code
snippet.

Figure 10-3

Four execution
paths.
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testing many paths. Thus, statement coverage, while a
beginning, is generally not an acceptable level of testing.

Even though statement coverage 1s the lowest level of coverage,
even that may be difficult to achieve in practice. Often modules
have code that is executed only in exceptional circumstances—
low memory, full disk, unreadable files, lost connections, etc.
Testers may find it difficult or even impossible to simulate these
circumstances and thus code that deals with these problems will
remain untested.

Holodeck is a tool that can simulate many of these exceptional
situations. According to Holodeck’s specification it “will allow
you, the tester, to test software by observing the system calls that
it makes and create test cases that you may use during software
execution to modify the behavior of the application.
Modifications might include manipulating the parameters sent to
functions or changing the return values of functions within your
software. In addition, you may also set error-codes and other
system events. This set of possibilities allows you to emulate
environments that your software might encounter - hence the
name ‘Holodeck.” Instead of needing to unplug your network
connection, create a disk with bad sectors, corrupt packets on the
network, or perform any outside or special manipulation of your
machine, you can use Holodeck to emulate these problems.

Faults can easily be placed into any software testing project that
you are using with Holodeck.”

Level 0
Actually, there i1s a level of coverage below “100%
statement coverage.” That level i1s defined as “test
whatever you test; let the users test the rest.” The
corporate landscape 1s strewn with the sun-bleached
bones of organizations who have used this testing
approach. Regarding this level of coverage, Boris Beizer
wrote “testing less than this [100% statement coverage]

Holodeck

To download
Holodeck visit
http://www.sisecure.
com/holodeck/
holodeck-trial.aspx.
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for new software 1s unconscionable and should be
criminalized. ... In case I haven’t made myself clear, ...
untested code in a system is stupid, shortsighted, and
irresponsible.”

Level 2
The next level of control flow coverage i1s “100%
decision coverage.” This 1s also called “branch
coverage.” At this level enough test cases are written so
that each decision that has a TRUE and FALSE outcome
1s evaluated at least once. In the previous example this

can be achieved with two test cases (a=2, b=2 and a=4,
b=3).

Figure 10-4

Two test cases that
yield 100% decision
coverage.

Case statements with multiple exits would have tests for
each exit. Note that decision coverage does not
necessarily guarantee path coverage but 1t does
guarantee statement coverage.

Level 3
Not all conditional statements are as simple as the ones
previously shown. Consider these more complicated
statements:
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Level 5
To be even more thorough, consider how the
programming language compiler actually evaluates the
multiple conditions in a decision. Use that knowledge to
create test cases yielding “100% multiple condition
coverage.”

if (a>0 && c==1) {x=x+1;}
if (b==3 || d<0) {y=0;}
// note: || means logical OR

will be evaluated as:

Figure 10-5

Compiler evaluation
of complex
conditions.

This level of coverage can be achieved with four test
cases:

a>0, c=1, b=3, d<0
a<0, c=1, b=3, d20
a>0, c21, b3, d<0
a<0, cz1, b3, d20

Achieving 100% multiple condition coverage also
achieves decision coverage, condition coverage, and
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decision/condition coverage. Note that multiple
condition coverage does not guarantee path coverage.

Level 7
Finally we reach the highest level, which is “100% path
coverage.” For code modules without loops the number
of paths 1s generally small enough that a test case can
actually be constructed for each path. For modules with
loops, the number of paths can be enormous and thus
pose an intractable testing problem.

Figure 10-6

An interesting flow
diagram with many,
many paths.

Level 6

When a module has loops in the code paths such that the
number of paths is infinite, a significant but meaningful
reduction can be made by limiting loop execution to a
small number of cases. The first case is to execute the
loop zero times; the second 1s to execute the loop one
time, the third is to execute the loop n times where n is a
small number representing a typical loop value; the
fourth 1s to execute the loop i1ts maximum number of
times m. In addition you might try m-/ and m+1.

Before beginning control flow testing, an appropriate level of
coverage should be chosen.
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Structured Testing / Basis Path Testing

No discussion on control flow testing would be complete without
a presentation of structured testing, also known as basis path
testing. Structured testing is based on the pioneering work of
Tom McCabe. It uses an analysis of the topology of the control
flow graph to identify test cases.

The structured testing process consists of the following steps:

e & & »

Derive the control flow graph from the software module.
Compute the graph’s Cyclomatic Complexity (C).
Select a set of C basis paths.

Create a test case for each basis path.

Execute these tests.

Consider the following control flow graph:

McCabe defines the Cyclomatic Complexity (C) of a graph as

C = edges — nodes + 2

Figure 10-7

An example control
flow graph.
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Edges are the arrows, and nodes are the bubbles on the graph.

The preceding graph has 24 edges and 19 nodes for a Cyclomatic
Complexity of 24-19+2 = 7.

In some cases this computation can be simplified. If all decisions
in the graph are binary (they have exactly two edges flowing
out), and there are p binary decisions, then

C =p+1

Cyclomatic Complexity is exactly the minimum number of
independent, nonlooping paths (called basis paths) that can, in
linear combination, generate all possible paths through the
module. In terms of a flow graph, each basis path traverses at
least one edge that no other path does.

McCabe’s structured testing technique calls for creating C test
cases, one for each basis path.

Because the set of basis paths covers all the edges and nodes of

the control flow graph, satisfying this structured testing criteria
automatically guarantees both branch and statement coverage.

A process for creating a set of basis paths is given by McCabe:

. Pick a “baseline” path. This path should be a reasonably
“typical” path of execution rather than an exception
processing path. The best choice would be the most
important path from the tester’s view.

IMPORTANT !

Creating and
executing C test
cases, based on the
basis paths,
guarantees both
branch and
statement
coverage.
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2. To choose the next path, change the outcome of the first
decision along the baseline path while keeping the

maximum number of other decisions the same as the
baseline path.

Figure 10-8

The chosen
baseline basis path
ABDEGKMQS

Figure 10-9

The second basis
path
ACDEGKMQS
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3. To generate the third path, begin again with the baseline
but vary the second decision rather than the first.

G 3
odoRcdho
& >
L e
© S

(¢

4. To generate the fourth path, begin again with the
baseline but vary the third decision rather than the
second. Continue varying each decision, one by one,
until the bottom of the graph 1s reached.

Figure 10-10

The third basis path
ABDFILORS

Figure 10-11

The fourth basis
path
ABDEHKMQS
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5. Now that all decisions along the baseline path have been
flipped, we proceed to the second path, flipping its
decisions, one by one. This pattern 1s continued until the
basis path set i1s complete.

Figure 10-12

The fifth basis path
ABDEGKNQS

Figure 10-13

The sixth basis path
ACDFJLORS

—n . r——
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Thus, a set of basis paths for this graph are:

ABDEGKMQS
ACDEGKMQS

ABDFILORS

ABDEHKMQS
ABDEGKNQS

ACDFJLORS
ACDFILPRS

Structured testing calls for the creation of a test case for each of
these paths. This set of test cases will guarantee both statement
and branch coverage.

Note that multiple sets of basis paths can be created that are not
necessarily unique. Each set, however, has the property that a set
of test cases based on it will execute every statement and every
branch.

SESEEEEEEEENEEEEE
Figure 10-14

The seventh basis

path
ACDFILPRS
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Example

Consider the following example from Brown & Donaldson. It is
the code that determines whether B&D should buy or sell a

particular stock. Unfortunately, the inner workings are a highly
classified trade secret so the actual processing code has been
removed and generic statements like S1; s2; etc. have
substituted for them. The control flow statements have been left
intact but their actual conditions have been removed and generic
conditions like ¢1 and c2 have been put in their place. (You
didn’t think we’d really show you how to know whether to buy
or sell stocks, did you?)

boolean evaluateBuySell (TickerSymbol ts) {
s1;
s2;
s3;
if (c1) {s4, s5; s6;)
else {s7; s8;}
while (c2) {
s9;
s10;
switch (c3) {
case-A:
s20;
s21;
s22;
break; // End of Case-A
case-B:
s30;
s31;
if (c4) {
s32;
s33;
s34;
}
else {
s35:
}

Note

s1, s2, ... represent
Java statements
while ¢1, c2, ...
represent
conditions.

Figure 10-15

Java code for
Brown &
Donaldson's
evaluateBuySell
module.,
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The following flow diagram corresponds to this Java code:

true EEEENESEEEEEEEEEN

Figure 10-16

false

Control flow graph
for Brown &

Donaldson’s
evaluateBuySell
true module.

Ol

G

case-A case-B case-D

false true

true

false e
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The cyclomatic complexity of this diagram 1s computed by
edges — nodes + 2
or

22-16+2 =8

Let’s remove the code and label each node for simplicity in
describing the paths.

\&©

false true

te

° EERENEREEEEEEEEREE
Figure 10-17

Control flow graph
true '\ for Brown &

Donaldson's
evaluateBuySell
module.

case-A case-B case-D

false true

¢
- :O

true

false o
o L —
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A set of eight basis paths 1s:

ABDP

ACDP
ABDEFGMODP
ABDEFHKMODP
ABDEFIMODP
ABDEFJMODP
ABDEFHLMODP
ABDEFIMNODP

ONOOARONA

Remember that basis path sets are not unique; there can be
multiple sets of basis paths for a graph.

This basis path set is now implemented as test cases. Choose
values for the conditions that would sensitize each path and
execute the tests.

Test C1 C2 C3 C4 C5 Table 10-1
Case
1 False | False | NJA | N/A N/A e
2 True False | N/A N/A N/A different control flow
3 False | True | A N/A False paths.
4 False | True B False False .
5 False | True C N/A False
6 False | True D N/A False
7 False | True B True False
8 False | True C N/A True

Applicability and Limitations

Control flow testing 1s the cornerstone of unit testing. It should
be used for all modules of code that cannot be tested sufficiently
through reviews and inspections. Its limitations are that the tester
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must have sufficient programming skill to understand the code
and its control flow. In addition, control flow testing can be very

time consuming because of all the modules and basis paths that
comprise a system.

Summary

e Control flow testing identifies the execution paths
through a module of program code and then creates and
executes test cases to cover those paths.

e Control flow graphs are the foundation of control flow
testing. Modules of code are converted to graphs, the

paths through the graphs are analyzed, and test cases are
created from that analysis.

¢ Cyclomatic Complexity i1s exactly the minimum number
of independent, nonlooping paths (called basis paths)

that can, in linear combination, generate all possible
paths through the module.

e Because the set of basis paths covers all the edges and
nodes of the control flow graph, satisfying this

structured testing criteria automatically guarantees both
branch and statement coverage.

Practice

1. Below 1s a brief program listing. Create the control flow
diagram, determine its Cyclomatic Complexity, choose a
set of basis paths, and determine the necessary values for
the conditions to sensitize each path.

165
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if (c1) {
while (c2) {
if (c3) { s1; s2;
if (c5) s5;
else s6;
break; // Skip to end of while
else
if (c4) { }
else { s3; s4; break; }
} // End of while
} /1 End of if
s7,;
if (c6) s8; s9;
s10;
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Holly had reached the age and level of maturity to comprehend
the emotional nuances of Thomas Wolfe's assertion "you can't go
home again,"” but in her case it was even more poignant because
there was no home to return to: her parents had separated, sold
the house, euthanized Bowser, and disowned Holly for dropping
out of high school to marry that 43-year-old manager of Trailer
Town in Idaho—and even their trailer wasn't a place she could
call home because it was only a summer sublet.

— Eileen Ostrow Feldman
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Technique

Variables that contain data values have a defined life cycle. They
are created, they are used, and they are killed (destroyed). In
some programming languages (FORTRAN and BASIC, for
example) creation and destruction are automatic. A variable is
created the first time it is assigned a value and destroyed when
the program exits.

In other languages (like C, C++, and Java) the creation is formal.
Variables are declared by statements such as:

int x; /] X is created as an integer
string y; // y is created as a string

These declarations generally occur within a block of code
beginning with an opening brace { and ending with a closing
brace }. Varnables defined within a block are created when their

definitions are executed and are automatically destroyed at the

end of a block. This is called the “scope” of the variable. For
example:

{ // begin outer block
int x; /I x is defined as an integer within this outer block
// x can be accessed here

{ // begin inner block

inty, //yis defined within this inner block

s // both x and y can be accessed here

} /'y is automatically destroyed at the end of
// this block

..., //'x can still be accessed, but y is gone
} /] x is automatically destroyed

Variables can be used in computation (a=b+1). They can also be
used in conditionals (if (a>42)). In both uses it is equally

169
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important that the variable has been assigned a value before it is
used.

Three possibilities exist for the first occurrence of a variable
through a program path:

1. ~d the variable does not exist (indicated by the ~),
then it 1s defined (d)
2. ~u the varniable does not exist, then 1t 1s used (u)
3. ~k the variable does not exist, then 1t is killed
or destroyed (k)

The first i1s correct. The variable does not exist and then it is
defined. The second is incorrect. A variable must not be used
before it is defined. The third is probably incorrect. Destroying a
variable before it is created is indicative of a programming error.

Now consider the following time-sequenced pairs of defined (d),
used (u), and killed (k):

dd Defined and defined again—not invalid but
suspicious. Probably a programming error.

du Defined and used—perfectly correct. The
normal case.

dk Defined and then killed—not invalid but
probably a programming error.

ud Used and defined—acceptable.

uu Used and used again—acceptable.

uk Used and killed—acceptable.

kd Killed and defined—acceptable. A variable is
killed and then redefined.

ku Killed and used—a serious defect. Using a
variable that does not exist or i1s undefined 1s
always an error.

kk Killed and killed—probably a programming
error.

Key Point

Examine time-
sequenced pairs of
defined, used, and
killed variable
references.
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A data flow graph is similar to a control flow graph in that it
shows the processing flow through a module. In addition, it
details the definition, use, and destruction of each of the
module’s variables. We will construct these diagrams and verify
that the define-use-kill patterns are appropriate. First, we will
perform a static test of the diagram. By “‘static” we mean we
examine the diagram (formally through inspections or informally
through look-sees). Second, we perform dynamic tests on the
module. By “dynamic” we mean we construct and execute test
cases. Let’s begin with the static testing.

Static Data Flow Testing

The following control flow diagram has been annotated with

define-use-kill information for each of the variables used in the
module.

Figure 11-1

The control flow
diagram annotated
with define-use-kill
information for each
of the module's
variables.
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For each variable within the module we will examine define-use-
kill patterns along the control flow paths. Consider variable X as
we traverse the left and then the right path:

define x ’

The define-use-kill patterns for X (taken in pairs as we follow the
paths) are:

~define correct, the normal case

define-define suspicious, perhaps a
programming error

define-use correct, the normal case

Figure 11-2

The control flow
diagram annotated
with define-use-kill
information for the x
variable.




Now for variable y. Note that the first branch in the module has

no impact on the y variable.

.
e!@

.,-
;
L
(-

Chapter 11 - Data Flow Testing 173

The define-use-kill patterns for y (taken in pairs as

we follow the paths) are:

~use
use-define
define-use

use-kill
define-kill

major blunder

acceptable

correct, the normal

case

acceptable

probable programming error

Figure 11-3

The control flow
diagram annotated
with define-use-kill
information for the y
variable.
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3. In systems that process interrupts, some of the define-
use-kill actions may occur at the interrupt level while
other define-use-kill actions occur at the main processing
level. In addition, if the system uses multiple levels of
execution priorities, static analysis of the myriad of

possible interactions is simply too difficult to perform
manually.

For this reason, we now turn to dynamic data flow testing.
Dynamic Data Flow Testing

Because data flow testing is based on a module’s control flow, it
assumes that the control flow is basically correct. The data flow
testing process 1s to choose enough test cases so that:

e Every “define” 1s traced to each of its “uses”
e Every “use” is traced from its corresponding “define”

To do this, enumerate the paths through the module. This 1s done
using the same approach as in control flow testing: Begin at the
module’s entry point, take the leftmost path through the module
to its exit. Return to the beginning and vary the first branching
condition. Follow that path to the exit. Return to the beginning
and vary the second branching condition, then the third, and so
on until all the paths are listed. Then, for every variable, create at
least one test case to cover every define-use pair.

Applicability and Limitations

Data flow testing builds on and expands control flow testing
techniques. As with control flow testing, it should be used for all
modules of code that cannot be tested sufficiently through
reviews and inspections. Its limitations are that the tester must
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if (counter > n) return answer;
answer = answer * counter;
counter = counter + 1;

goto loop;

2. Diagram the control flow paths and derive the data flow
test cases for the following module:

int module( int selector) {

int foo, bar;

switch selector {

case SELECT-1:
foo = calc_foo_method_1();
break;

case SELECT-2:
foo = calc_foo_method_2();
break;

case SELECT-3:
foo = calc_foo_method_3();
break;
}

switch foo {

case FOO-1:
bar = calc_bar_method_1();
break;

case FOO-2:
bar = calc_bar_method_2();
break;

}

return foo/bar;

}

Do you have any concerns with this code? How would
you deal with them?
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somewhat exploratory and exploratory testing may be somewhat
scripted.

Test Planning

Planning has been defined as simply “figuring out what to do
next.” To be most effective and efficient, planning 1s important.
But when and how should that planning be done? Scripted
testing emphasizes the value of early test design as a method of
detecting requirements and design defects before the code is
written and the system put into production. Its focus is on
accountability and repeatability. Exploratory testing challenges
the 1dea that tests must be designed so very early 1n the project,
when our knowledge is typically at its minimum. Its focus is on
learning and adaptability.
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Jane was toast, and not the light buttery kind, nay, she was the
kind that's been charred and blackened in the bottom of the
toaster and has to be thrown away because no matter how much
of the burnt part you scrape off with a knife, there's always more
blackened toast beneath, the kind that not even starving birds in
winter will eat, that kind of toast.

— Beth Knutson
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Introduction

Fnr scripted testing to be understood, it must be understood in
its historical context. Scripted testing emerged as one of the
component parts of the Waterfall model of software
development. The Waterfall model defines a number of
sequential development phases with specific entry and exit
criteria, tasks to be performed, and deliverables (tangible work
products) to be created. It is a classic example of the “plan your
work, work your plan” philosophy. Typical Waterfall phases
include:

1. System Requirements — Gathering the requirements for
the system.

2. Software Requirements — Gathering the requirements for
the software portion of the system.

3. Requirements Analysis — Analyzing, categorizing, and
refining the software requirements.

4. Program Design — Choosing architectures, modules, and
interfaces that define the system.

5. Coding - Writing the programming code
implements the design.

6. Testing — Evaluating whether the requirements were
properly understood (Validation) and the design properly
implemented by the code (Verification).

7. Operations — Put the system into production.

that

This model was first described in 1970 in a paper entitled
“Managing the Development of Large Scale Systems™ by Dr.
Winston W. Royce. Royce drew the following diagram showing
the relationships between development phases:

Interesting Trivia

A Google search for
“plan your work”™
and “work your
plan” found 3,570
matches including:

Football
recruiting
Business
planning
Building with
concrete blocks
Online
marketing
Industrial
distribution

The Princeton
University's
Women's Water
Polo Team

And thousands
more
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Repeatability means that there is a definition of a test (from
design through to detailed procedure) at a level of detail
sufficient for someone other than the author to execute it in an
identical way. Objectivity means that the test creation does not
depend on the extrordinary (near magical) skill of the person
creating the test but is based on well understood test design
principles. Auditability includes traceability from requirements,
design, and code to the test cases and back again. This enables
formal measures of testing coverage.

“Plan your work, work your plan.” No phrase so epitomizes the
scripted testing approach as does this one, and no document so
epitomizes the scripted testing approach as does IEEE Std 829-
1998, the “IEEE Standard for Software Test Documentation.”

This standard defines eight documents that can be used in
software testing. These documents are:

Test plan

Test design specification
Test case specification

Test procedure specification
Test item transmittal report
Test log

Test incident report

Test summary report
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Test Plan

Test
Design
Specificatio

Test Test

Case Procedure
pecification Specification

Test Item
Transmittal

Incident
Report

--I‘*‘ Input.r'ﬂutpul

Figure 12-2 shows the relationships between these documents.
Note that the first four documents that define the test plan, test
designs, and test cases are all created before the product is
developed and the actual testing is begun. This is a key idea in

scripted testing—plan the tests based on the formal system
requirements.

Curiously, the IEEE 829 standard states, “This standard specifies
the form and content of individual test documents. It does not
specify the required set of test documents.” In other words, the
standard does not require you to create any of the documents
described. That choice 1s left to you as a tester, or to your
organization. But, the standard requires that if you choose to

Figure 12-2

The IEEE 829 Test
Documents
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required. Test plans can be created at the project level
(master test plan) or at subsidiary levels (unit, integration,
system, acceptance, etc.). The test plan i1s composed of the
following sections:

. Test plan identifier — A unique identifier so that this
document can be distinguished from all other
documents.

2. Introduction — A summary of the software to be tested.
A brief description and history may be included to set
the context. References to other relevant documents
useful for understanding the test plan are appropriate.
Definitions of unfamiliar terms may be included.

3. Test items — Identifies the software items that are to be
tested. The word “item” 1s purposely vague. It 1s a
“chunk” of software that is the object of testing.

4. Features to be tested — Identifies the characteristics of
the items to be tested. These include functionality,
performance, security, portability, usability, etc.

5. Features not to be tested — Identifies characteristics of
the items that will not be tested and the reasons why.

6. Approach — The overall approach to testing that will
ensure that all items and their features will be adequately
tested.

7. Item pass/fail criteria — The criteria used to determine
whether each test item has passed or failed testing.

8. Suspension criteria and resumption requirements — The
conditions under which testing will be suspended and the
subsequent conditions under which testing will be
resumed.

9. Test deliverables — Identifies the documents that will be
created as a part of the testing process.

10. Testing tasks — Identifies the tasks necessary to perform
the testing.
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I1. Environmental needs - Specifies the environment
required to perform the testing including hardware,
software, communications, facilities, tools, people, etc.

12. Responsibilities - Identifies the people/groups
responsible for executing the testing tasks.

13. Staffing and training needs — Specifies the number and
types of people required to perform the testing, including
the skills needed.

14. Schedule — Defines the important key milestones and
dates in the testing process.

I15. Risks and contingencies - Identifies high-risk
assumptions of the testing plan. Specifies prevention and
mitigation plans for each.

16. Approvals — Specifies the names and titles of each
person who must approve the plan.

Test Design Specification

The purpose of the test design specification is to identify a
set of features to be tested and to describe a group of test
cases that will adequately test those features. In addition,
refinements to the approach listed in the test plan may be

specified. The test design specification is composed of the
following sections:

. Test design specification identifier — A unique identifier
so that this document can be distinguished from all other
documents.

2. Features to be tested — Identifies the test items and the
features that are the object of this test design
specification.

3. Approach refinements — Specifies the test techniques to
be used for this test design.

4. Test 1dentification — Lists the test cases associated with
this test design. Provides a unique identifier and a short
description for each test case.
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5. Feature pass/fail criteria — The criteria used to determine
whether each feature has passed or failed testing.

s

Test Case Specification

93

The purpose of the test case specification is to specify in
detail each test case listed in the test design specification. 1

The test case specification is composed of the following
sections:

I. Test case specification identifier — A unique identifier so
that this document can be distinguished from all other
documents.

2. Test items — Identifies the items and features to be tested
by this test case.

3. Input specifications — Specifies each input required by
this test case.

4. Output specifications — Specifies each output expected
after executing this test case.

5. Environmental needs — Any special hardware, software,
facilities, etc. required for the execution of this test case
that were not listed i1n its associated test design
specification.

6. Special procedural requirements — Defines any special
setup, execution, or cleanup procedures unique to this
test case.

7. Intercase dependencies — Lists any test cases that must
be executed prior to this test case.

Test Procedure Specification

The purpose of the test procedure specification is to specify
the steps for executing a test case and the process for

—
-—

determining whether the software passed or failed the test.

The test procedure specification 1s composed of the
following sections:
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execution. The test log 1s composed of the following
sections:

1. Test log identifier — A unique identifier so that this
document can be distinguished from all other
documents.

2. Description — Identifies the items being tested and the
environment under which the test was performed.

3. Activity and event entries — For each event, lists the
beginning and ending date and time, a brief description
of the test execution, the results of the test, and unique
environmental information, anomalous events observed,

and the incident report identifier if an incident was
logged.

195

Test Incident Report (a.k.a. Bug Report)

The purpose of the test incident report is to document any

event observed during testing that requires further

investigation. The test incident report 1s composed of the
following sections:

. Test incident report i1dentifier — A unique i1dentifier so
that this document can be distinguished from all other
documents.

2. Summary — Summarizes the incident.

3. Incident description — Describes the incident in terms of
inputs, expected results, actual results, environment,
attempts to repeat, etc.

4. Impact — Describes the impact this incident will have on
other test plans, test design specifications, test
procedures, and test case specifications. Also describes,

if known, the impact this incident will have on further
testing.
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Test Summary Report

The purpose of the test summary report 1s to summarize the
results of the testing activities and to provide an evaluation
based on these results. The test summary report is composed
of the following sections:

. Test summary report identifier — A unique identifier
(imagine that!) so that this document can be
distinguished from all other documents.

2. Summary — Summarizes the evaluation of the test items.

3. Variance — Reports any variances from the expected
results.

4. Comprehensive assessment — Evaluates the overall
comprehensiveness of the testing process itself against
criteria specified in the test plan.

5. Summary of results — Summarizes the results of the
testing. Identifies all unresolved incidents.

6. Evaluation — Provides an overall evaluation of each test
item including its limitations.

7. Summary of activities — Summarizes the major testing
activities by task and resource usage.

8. Approvals — Specifies the names and titles of each
person who must approve the report.

S_—
P

Advantages of Scripted Testing

1. Scripted testing provides a division of labor—planning,
test case design, test case implementation, and test case
execution that can be performed by people with specific
skills and at different times during the development
process.
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Test design techniques such as equivalence class
partitioning, boundary value testing, control flow testing,
pairwise testing, etc. can be integrated into a formal
testing process description that not only guides our

testing but that could also be used to audit for process
compliance.

Because scripted tests are created from requirements,
design, and code, all important attributes of the system
will be covered by tests and this coverage can be
demonstrated.

Because the test cases can be traced back to their
respective requirements, design, and code, coverage can
be clearly defined and measured.

Because the tests are documented, they can be easily
understood and repeated when necessary without
additional test analysis or design effort.

Because the tests are defined in detail, they are more
easily automated.

Because the tests are created early in the development

process, this may free up additional time during the
critical test execution period.

In situations where a good requirements specification 1is
lacking, the test cases, at the end of the project, become
the de facto requirements specification, including the
results that demonstrate which requirements were
actually fulfilled and which were not.

Scripted tests, when written to the appropriate level of
detail, can be run by people who would otherwise not be
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Introduction

The term "exploratory testing,” coined by Cem Kaner in his
book Testing Computer Software, refers to an approach to
testing that 1s very different from scripted testing. Rather than a
sequential examination of requirements, followed by the design
and documentation of test cases, followed by the execution of
those test cases, exploratory testing, as defined by James Bach, is
“simultaneous learning, test design, and test execution.” The
tester designs and executes tests while exploring the product.

In an article for StickyMinds.com entitled “Exploratory Testing
and the Planning Myth,” Bach wrote, “Exploratory Testing, as |
practice it, usually proceeds according to a conscious plan. But
not a rigorous plan ... it’s not scripted in detail.” James adds,
“Rigor requires certainty and implies completeness, but I
perform exploratory testing precisely because there’s so much I
don’t know about the product and I know my testing can never
be fully complete.” James continues, “To the extent that the next
test we do 1s influenced by the result of the last test we did, we
are doing exploratory testing. We become more exploratory
when we can’t tell what tests should be run, in advance of the
test cycle.”

In exploratory testing, the tester controls the design of test cases
as they are performed rather than days, weeks, or even months
before. In addition, the information the tester gains from
executing a set of tests then guides the tester in designing and
executing the next set of tests.

Note this process is called exploratory testing to distinguish it
from ad hoc testing which (by my definition, although others
may disagree) often denotes sloppy, careless, unfocused,
random, and unskilled testing. Anyone, no matter what their

Exploratory
Testing

To the extent that
the next test we do
IS influenced by the
result of the last test
we did, we are
doing exploratory
testing. We become
more exploratory
when we can't tell
what tests should
be run, in advance
of the test cycle.
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experience or skill level, can do ad hoc testing. That kind of
testing is ineffective against all but the most defect-ridden

systems, and even then may not find a substantial portion of the
defects.

Bach suggests that in today’s topsy-turvy world of incomplete,
rapidly changing requirements and minimal time for testing, the
classical sequential approach of Test Analysis followed by Test
Design followed by Test Creation followed by Test Execution is
like playing the game of “Twenty Questions” by writing out all
the questions in advance. Consider the following discussion from
a testing seminar discussing exploratory testing:

Instructor: Let’'s play a game called “Twenty
Questions.” I am thinking about something in the
universe. I'm giving you, the class, twenty questions to
identify what I'm thinking about. Each question must be
phrased in a way that it can be answered “Yes” or “No.”
(If I let you phrase the question in any form you could
ask “What are you thinking about” and we would then
call this game “One Question.”) Ready? Brian, let’s
begin with you.

Brian: Does it have anything to do with software
testing?

Instructor: No, that would be too easy.

Michael: Is it large?

Instructor: No, i1t’s not large.

Rebecca: Is 1t an animal?

Instructor: No.

Rayanne: Is it a plant?

Instructor: Yes, it i1s a plant.

Henry: Is it a tree?

Instructor: No, 1t 1s not a tree.

Sree: Is it big?

Instructor: No, I’ ve already said 1t 1s not large.

Eric: Is it green?

Twenty Questions:
The Game

A game in which
one person thinks
of something and
others ask up to 20
questions to
determine what has
been selected. The
questions must be
answerable “Yes" or
“No.”

When played well,
each question is
based on the
previous questions
and their answers.
Writing the
questions out in
advance prevents
using the
knowledge acquired
from each answer.
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How successful would we be at this game 1if we had to write out
all the questions in advance? When we play this game well, each
question depends on the previous questions and their answers. So
it is in exploratory testing. Each test provides us with
information about the product. We may see evidence of the
product’s correctness, we may see evidence of its defects. We
may see things that are curious; we're not sure what they mean,
things that we wonder about and want to explore further. So, as
we practice exploratory testing, we concurrently learn the
product, design the tests, and execute these tests.

Description

In his classic time management book, How to Get Control of
Your Time and Your Life, Alan Lakein suggests we should
constantly ask ourselves: What i1s the most important thing I can
do with my time right now? Exploratory testers ask an equivalent
question: What is the most important test I can perform right
now?

A possible exploratory testing process is:

e (Creating a conjecture (a mental model) of the proper
functioning of the system

¢ Designing one or more tests that would disprove the
conjecture

¢ Executing these tests and observing the outcomes

¢ Evaluating the outcomes against the conjecture

e Repeating this process until the conjecture is proved or
disproved

Another process might be simply to explore and learn before
forming conjectures of proper behavior.

Key Question

What is the most
important test | can
perform right now?
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Exploratory testing can be done within a “timebox,” an
uninterrupted block of time devoted to testing. These are
typically between sixty and 120 minutes in length. This is long
enough to perform solid testing but short enough so that the
tester does not mentally wander. In addition, a timebox of this

length 1s typically easier to schedule, easier to control, and easier
to report.

When performing “chartered exploratory testing,” a charter is
first created to guide the tester within the timebox. This charter
defines a clear mission for the testing session. The charter may
define:

e What to test
e What documents (requirements, design, user manual,

etc.) are available to the tester
e What tactics to use

e What kinds of defects to look for
e What nsks are involved

This charter 1s a guideline to be used, not a script to be followed.
Because of this approach, exploratory testing makes full use of
the skills of testers. Bach writes, “The more we can make testing
intellectually rich and fluid, the more likely we will hit upon the
right tests at the right time.”

Charters focus the exploratory tester’s efforts within the
timebox. Possible charters include:

e Thoroughly investigate a specific system function

¢ Define and then examine the system’s workflows

e Identify and verify all the claims made in the user
manual

e Understand the performance characteristics of the
software

e Ensure that all input fields are properly validated

Key Point

The charter is a
guideline to be used,
not a script to be
followed.
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In general, processes that have weak, slow, or nonexistent
feedback mechanisms often do not perform well. Scripted testing
1s a prime example of a slow feedback loop. Exploratory testing
provides a tight feedback loop between both test design and test
execution. In addition, it provides tight feedback between testers
and developers regarding the quality of the product being tested.

Advantages of Exploratory Testing

o

Exploratory testing 1s valuable in situations where
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